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Figure 1: One reason virtual reality systems today cannot yet deliver retina-quality video experiences is due to bandwidth
limitations. To reduce data rates, recent work uses the decay of visual acuity in human perception for foveated video com-
pression, keeping a small region of high resolution while decaying quality in the periphery (left)1. We show that decreasing
motion-to-photon latency benefits foveated video compression and enablesminimally-sized regions of high resolution (right).

ABSTRACT
Virtual reality systems today cannot yet stream immersive, retina-
quality virtual reality video over a network. One of the greatest
challenges to this goal is the sheer data rates required to transmit
retina-quality video frames at high resolutions and frame rates.
Recent work has leveraged the decay of visual acuity in human
perception in novel gaze-contingent video compression techniques.
In this paper, we show that reducing the motion-to-photon latency
of a system itself is a key method for improving the compression
ratio of gaze-contingent compression. Our key finding is that a
client and streaming server system with sub-15ms latency can
achieve 5× better compression than traditional techniques while
also using simpler software algorithms than previous work.

CCS CONCEPTS
• Computing methodologies → Image compression; Virtual
reality; • Hardware→ Displays and imagers.
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1 INTRODUCTION
Virtual reality (VR) video strives to offer immersive experiences
through high fidelity, 360° display of recorded content. Doing so
requires streaming video at both high resolutions and frame rates
across large fields of view with constrained computational power

1Note that the quality reduction has been exaggerated for illustration purposes.

and bandwidth. Today’s VR systems, unable to achieve this, stream
videos below retina resolution, at low frame rates, or both.

Several practical challenges stand in the way of achieving immer-
sive, retina-quality VR video. First, only powerful GPUs are capable
of decoding high resolution video frames at, or greater than, the
90Hz or higher refresh rates that are essential for VR [8]. Second,
modern VR display hardware does not yet support retina-quality
pixel densities. Consumer headsets today only reach about 20 % of
that goal2. Third, the poor performance of existing systems is due
in part to the sheer amount of data our retinal acuity requires. In
this paper, we focus on this third challenge.

Consider an uncompressed 5.7K (5760 × 2880 px), 360 × 180°, VR
video—the highest resolution supported by 360° cameras today.
Setting aside the immense bandwidth requirements of streaming
uncompressed 5.7K video (∼7Gbit/s), this would still only achieve
16 samples/°, just 27 % of the 60 samples/° standard for retina qual-
ity. Since streaming services like YouTube encode 5.7K video at
15 to 30Mbit/s (>230× smaller than the uncompressed bitrate),
the resolution after compression is even worse. Achieving retina-
quality VR video with traditional techniques would require a huge
increase in bitrate (higher resolutions and less compression); the
bandwidth requirements alone are a barrier.

This challenge has inspired perceptually-motivated graphics; a
complementary field of work that exploits the limitations of human
perception to reduce bandwidth or computation. In particular, these
techniques use the fact that our visual acuity (or ability to resolve
spatial detail) is highest in the region of the retina called the fovea
2For example, one pixel of the HTC VIVE Pro is approximately 4′35′′ of visual angle,
or ∼5× larger than the minimum angle of resolution in the foveola
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and drops quickly with eccentricity (or distance from the fovea).
Combined with eye tracking, this knowledge is used to degrade
rendering quality [10, 13, 30], level-of-detail [26, 28, 29], or display
resolution [19, 42] in regions that fall on a user’s periphery, thus
reducing bandwidth without perceivable quality degradation. For
streaming 360° video, related work also utilizes techniques such
as adapting encoding parameters [12], predicting a user’s field
of view [41] and upscaling highly compressed video using super-
resolution [7] (Figure 1 shows an example). We focus on foveated
video compression, which seeks to compress a sequence of frames
while modeling visual acuity decay to concentrate the allocation of
bits in the encoded video to the foveal region [16, 18, 33].

While the compression benefits of foveated techniques are sig-
nificant, they are fundamentally limited by the motion-to-photon
latency of the system. This latency is the time between a change in
the viewer’s gaze and the resulting change in the display’s pixels.
Larger latencies introduce larger uncertainty about the viewer’s
gaze position and consequently require a larger foveal region to
avoid perception of the degradation applied in the periphery.

We present a study on the relationship between a system’s
motion-to-photon latency and the bitrate required to display a
gaze-contingent video without degrading its perceived quality. We
use a desktop setup as a proxy for future high-frame-rate, low-
latency, retina-resolution VR systems. Our key finding is that with
∼15ms latency, we improve on the bitrate of traditional compres-
sion techniques by 5× while using simpler software techniques
than previous work. We also test more modest reductions in latency
(e.g., to 45ms), but did not find latency at this level to be helpful
in reducing bitrate. We believe using gaze-contingent compres-
sion with low-latency systems is a key step towards realizing truly
immersive VR experiences.

Contributions. This paper makes these contributions:
• We build a video streaming system using foveated video com-
pression. The display reacts to gaze changes within 15ms,
over 3× lower than previously demonstrated in VR HMDs.

• Through a user study using our low-latency prototype, we
derive perceptual insights about the relationship between
system latency and the bitrate required to display a foveated
video without noticeable quality degradation.

• We find that low latency can reduce the required bitrate of a
video transmission system by 5×, but only when end-to-end
latency is well below the ∼50ms budget thought sufficient
by previous work.

We focus on the impact of eye-motion-to-photon latency. As a
result, our design has a few important limitations. First, our system
excludes the latency introduced by separating the client and server
with a realistic network. The need for low server-to-client latencies
means that a video encoder would need to be near the client at the
network edge (a potential use case for edge computing). Second,
our prototype uses an encoder-in-the-loop approach to perform
video compression and streaming in real-time. This approach has a
higher computational cost than those that pre-encode video since it
instead requires the server to encode video for each viewer. Last, we
evaluate our system using an eye tracker and display that are among
the fastest available today; comparable performance is unavailable
on the consumer market or in current head-mounted displays.

2 BACKGROUND AND RELATEDWORK
2.1 Human Perception
The human visual system has a field of view of approximately
220° horizontally by 135° vertically [20]. Yet only a small region
(∼1.5°), called the fovea, is capable of resolving spatial detail as
fine as 60 cycles/° [9]. Outside the fovea, the distribution of retinal
components and refractive lens effects change rapidly, resulting in
decreased visual acuity [44], less sensitivity to color [2, 14], and
limited stereoscopic depth discrimination [37], as well as increased
sensitivity to flicker [15, 23] in our peripheral visual field.

The eyes make short, rapid movements called saccades to scan vi-
sual scenes with the high-resolution fovea. While these ballistic-like
movements can occur at speeds of up to ∼900 °/s [6], the tempo-
rary suspension in perception (referred to as saccadic suppression)
that occurs a short period before, during, and after the eye move-
ment (totaling 50 to 200ms [35]) reduces the challenge they pose to
gaze-contingent systems. However, even during fixation the eyes
involuntarily move, albeit slower (∼50 ′/s [36]), exploring fine de-
tail with a random-walk-like pattern referred to as ocular drift and
correcting the fixation position with microsaccades. During fixa-
tion, there is also a high frequency component referred to as ocular
tremor (see [22] for a detailed review).

2.2 Foveated Video Compression
This knowledge of the human visual system, coupled with real-time
eye tracking, has given rise to foveated graphics techniques that
imperceptibly degrade the peripheral image to improve efficiency
(i.e., reducing bandwidth or computation). For example, foveated
graphics improves efficiency by reducing the number of vertices
or fragments a GPU has to sample, ray trace, shade, or transmit to
the display [21]. The most prominent approach is perhaps foveated
rendering [10, 13, 30] and display [19, 42], where images and videos
are rendered, transmitted, or displayed with spatially varying res-
olutions without affecting the perceived image quality. Related
approaches also use gaze location to vary bit-depth [27], shading
or level-of-detail [26, 28, 29], or reconstruct content from sparse
samples [18] outside of the foveal region.

These ideas have also been applied to video compression. Tradi-
tional video compression removes temporal and spatial redundancy
in a sequence of video frames. Foveated video compression builds
on these techniques by using real-time gaze information to con-
centrate data allocation in an encoded video to the foveal region,
achieving better compression in the periphery.

There are many approaches for foveated video compression.
Lee et al. [24] use a nonuniform filtering scheme to increase com-
pression. Specifically, their algorithm maximizes a foveated signal-
to-noise ratio (FSNR) using a Lagrange multiplier along curvilinear
coordinates. Illahi et al. [16] use a similar but simpler approach of
varying quantization parameters, compressing peripheral regions
more than foveal regions. Instead of compressing a single video
stream, Romero et al. [33] store a video in two resolutions, low
and high. A client first fetches the low-resolution stream, and then
streams only the cropped, high-resolution segments based on a
viewer’s current gaze. Similarly, Jeppsson et al. [17] divide a video
into many small blocks and pre-encodes each block in many differ-
ent resolutions. Then, when streaming, the resolutions are chosen

ACM SIGCOMM Computer Communication Review Volume 52 Issue 1, January 2022



t

eye moves
user observes 

artifacts

t + ∆t; ∆t < tL  

Figure 2: A system must compensate for latency by enlarg-
ing the foveal region to avoid a viewer’s gaze escaping the
region before the system can react.
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Figure 3: Related work uses a variety of functions to approx-
imate relative quality (i.e., the allocation of bits) with the
decay in visual acuity.

on the server based on gaze data and stitched together at the client
into three levels of resolution. Foveated video compression can
achieve bitrates that are 25 to 60 % of the bitrates of traditional
compression algorithms with similar visual quality.

2.3 Latency
Being gaze-contingent, foveated compressions systems are very
sensitive to motion-to-photon latency—the time between the eyes
moving and the pixels of the display updating with the frame corre-
sponding to the new gaze location. Yet none of the foveated video
compression works described in Section 2.2 discuss the impact of
latency on their results.

The importance of system latency has been given more attention
in foveated rendering, with a number of works measuring the max-
imal tolerable system latency to be between 42 to 91ms, depending
on the size of the full resolution foveal image that follows the gaze,
the degree of degradation applied to the image, and the type of
degradationmethod used [1, 13, 39, 45]. Similarly, Loschky et al. [25]
also observed that detection of image artifacts due to foveation in
gaze-contingent, multiresolution displays did not change if latency
was kept under 60ms. However, to the best of our knowledge we are
the first to show the significant compression benefits of squeezing
system latency below these budgets in reducing the bitrate needed
to produce the same visual quality.

3 LATENCY VS. COMPRESSION
Foveated video compression relies on accurate, real-time gaze infor-
mation to allocate a larger portion of the bitrate to where a viewer
is looking while decaying the quality in the periphery. Assuming

accurate and instantaneous gaze information, these algorithms can
compress frames to haveminimally-sized regions of high-resolution
without viewer detection. In practice, however, latency introduces
uncertainty in a viewer’s gaze position, requiring larger regions of
high-resolution video3. Figure 2 illustrates this challenge. On the
left, the gaze position used by the system matches the actual gaze
position perfectly, and the periphery can be highly compressed.
However, a system must also keep the foveal region large enough
such that when the gaze moves, it does not escape the region before
the system can react (shown on the right). This occurs if the system
latency, 𝑡𝐿 , is longer than the time it takes for the gaze to move.
Consequently, there is tension between minimally sizing the foveal
region for better compression and sizing it large enough to ensure
a viewer does not see video artifacts.

While we understand the decay in visual acuity of the human
visual system well [11, 32], our understanding of the nuances of pe-
ripheral vision (e.g., change blindness, crowding, object recognition,
etc.) is still actively developing [34, 40]. Because of these nuances,
there is no well-understood mapping function that a foveated com-
pression algorithm can use to transmit the minimal number of bits
while maintaining high visual quality for all types of videos.

As a result, foveation is usually achieved by empirically choos-
ing an approximation function to model the decay in visual acu-
ity and applying transformations that appear visually acceptable.
For example, Illahi et al. [16] and Wiedemann et al. [46] choose
a Gaussian function, Romero et al. [33] choose a step function,
and Guenter et al. [13] choose a step function with multiple steps.
Figure 3 shows examples of these approximations functions.

Figures 1 and 3 also plot the acuity model of Geisler et al. [11], fit
with parameters from Robson et al. [32], in blue. This gives visual
acuity, 𝐴, as a function of eccentricity, 𝑒 , as follows.

𝐴(𝑒) = ln(64) 2.3
0.106 ∗ (𝑒 + 2.3) (1)

The goal of these approximations is to minimize the gap between
the transmitted quality and the perceived quality. As annotated in
Figure 1, transmitting too high of a quality in the periphery wastes
bits while transmitting too low of a quality results in visual artifacts.
Further, as system latency increases, so does uncertainty about the
viewer’s gaze and, consequently, the size of the foveal region. The
approximation functions must be widened to accommodate this
uncertainty, resulting in more wasted bandwidth.

In practice, we find that the choice of approximation function
also influences implementation choices, which can in and of itself
cause additional latency. For example, a common foveated compres-
sion implementation of a Gaussian approximation is to vary the
degree of compression of individual subregions of a video frame
according to the Gaussian function [16, 46]. This requires process-
ing the full video resolution to produce a single video stream of
smoothly varying quality. In contrast, a simple step function can be
implemented using two traditionally compressed video streams—
one for the cropped high-resolution foveal region and one for the
low resolution background. This approach results in far less process-
ing. For example, rather than processing a full 4K (3840 × 2160 px)
video, a two-stream approach might process a small 480 × 480 px
3Inaccuracy in an eye tracking device also contributes to this uncertainty but is out of
scope of this work.
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Figure 4: Overview of our low-latency, desktop-based prototype system. This system allows us to focus on the effects of latency
on foveated video compression by avoiding the limitations complexities of current VR HMDs.

foveal region and a downscaled 768 × 432 px background, which
combines to be <7 % of the original 4K pixels.

To focus on the impact of reducing latency, we chose a simple
two-stream approach (Section 4). Our experience suggests that
achieving low latencies will be key to realistically achieving retina-
quality VR video over a network. We cannot have long latencies
and achieve great compression; we need great latencies as well.

4 A LOW-LATENCY PROTOTYPE SYSTEM
Understanding the real-world impact of latency on foveated video
compression requires a system with very low latencies. However,
commercial head-mounted displays (HMDs) used for VR today have
system latencies >45ms [38]. In addition, these HMDs do not have
sufficiently high resolutions (i.e., less than 4K) to be an ideal test bed
for studying the impact of latency on compression of retina-quality
video4. Consequently, we build a desktop-based system as a proxy
for future VR HMDs. Doing so allows us to focus on the impact of
latency without the limitations of current HMDs.

4.1 Architecture
We design our system based on a typical video-streaming architec-
ture with a client and server model. However, rather than the client
only receiving encoded video frames from the server to decode
and display, the client also sends the viewer’s current gaze position
each time a frame is received (Figure 4). This gaze sample allows
the server to encode the next video frame foveated on the viewer’s
gaze position. To minimize system latency, the server and client
run as separate processes on the same machine and communicate
using message passing, implemented with shared memory.

4.2 Two-Stream Compression
To reduce the latency spent on encoding and decoding, our system
uses a simple two-stream approach. The server sequentially reads
uncompressed frames at the frame rate of the input video. Then,
for each gaze sample it receives from the client, it compresses
up to two versions of the current frame5. First, it downscales the
video frame to a significantly lower resolution. Second, it crops the
video frame to a small area around the viewer’s gaze location. The
resolution of both the downscale and the crop are configurable. It
then encodes these two frames to send to the client. At the client,
4Recent HMDs, such as the Vive Pro 2, do include 4k or higher resolution displays.
5We also skip both background frames when the current video frame has not changed
and foreground frames if the gaze has not not changed.

the reverse process occurs. First, the client decodes and upscales
the background frame to the size of its display. Next, it decodes
the foreground frame and positions it at the corresponding gaze
position with a blend6. Finally, it displays this composed frame.

As is typical with compression techniques, this approach trades
off increased computation (real-time encoding per client) for re-
duced bitrate. While the server can pre-encode the background, the
foreground must be encoded in real-time using the viewer’s gaze.

4.3 System Details
We implement our system in Rust, using SDL2, FFmpeg, and x264.
Our workstation runs Pop!_OS 20.04 and contains an AMD Ryzen 7
3700X CPU, 16GB of 3200MHz memory, and an NVIDIA GeForce
RTX 2070 SUPER GPU. Our display is an LG 27GN95B-B (4K at
144Hz, 7.6ms input latency). An Eyelink 1000 provides low-latency
eye tracking. The software for this system available at https://github.
com/lukehsiao/fvideo.

5 EXPERIMENTS
Using our low-latency prototype system as a proxy for future VR
HMDs, we seek to answer the following questions.

(1) What is the lower bound for latency of modern hardware?
(2) What is the latency of our foveated compression system, and

where is the time spent?
(3) What is the relationship between system latency and achiev-

able video compression?

5.1 Lower Bound for System Latency
The first experiment finds a lower bound for the achievable sys-
tem latency using commercially available hardware. We use an eye
tracker and display that are among the lowest latency available to-
day and minimize video processing by only toggling portions of the
display between black and white (i.e., omitting video encoding/de-
coding). We use an Eyelink 1000 to minimize the latency between a
viewer’s eyes moving and receiving the data in software. Although
lower-latency eye trackers are continually being developed [3], the
Eyelink 1000 provides a good trade-off between accuracy, latency7,
and sampling rate among those that are commercially available8.

6We set the alpha channel (opacity) to a 2D Gaussian in order to fade out the hard,
square edges of the foreground. The parameters of the Gaussian are chosen empirically.
7We disable the built-in filters to further minimize latency
8Based on their advertised specifications and prior comparison by others [38].
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Figure 5: We use an oscilloscope to measure a lower bound
for system latency—the time between an artificial saccade
occurring (the falling edge in green) and the pixels of the
display reacting (the rising edge in yellow).
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Figure 6: ECDF of end-to-end system latencies. A simple two-
stream approach for compression (fvideo) only adds ∼5ms
over the lower bound.

To minimize the latency between a frame being sent to the dis-
play and the pixels changing, we select a ZisWorks x28 R2 monitor
(1080p resolution at 240Hz), which advertises an input latency of
∼30 µs, significantly lower than the 1.5 to 16ms of most consumer
monitors. We also opt for a simple graphics stack for this experi-
ment by using Xubuntu 18.04 with compositing disabled.

To ensure measurements are precise, automated, and repeat-
able, we design our own Arduino-based artificial saccade generator
(ASG)9. Most eye trackers (head-mounted or desktop) either track
the infrared (IR) reflection of the retina or directly process a video
stream of the eye to detect and track the pupil [31]. The Eyelink 1000
uses IR reflection, so we build an ASG that can be triggered using
software and toggles between two IR LEDs to mimic a saccade.

Finally, we implement a minimal system that polls for changes in
gaze position using the eye tracker and then uses OpenGL to change
a small portion of the display from black to white. This pixel change
is then detected using a photodiode circuit. The approach of using
an ASG and photodiode circuit to measure latency is commonly
used [4, 5, 31]. System latency is measured as the time between
triggering the ASG and the mid-point of seeing the pixel change on
the photodiode. Figure 5 shows an oscilloscope trace of this process
with a system latency of 6.7ms. In some cases, it is possible for the
saccade to be triggered and the display pixels to change within the
one refresh cycle of the monitor. However, if the saccade does not
line up with the frame clock, then it may take up to an additional
refresh cycle to update.
9See https://github.com/lukehsiao/eyelink-latency. Unable to find a suitable commer-
cial ASG, we follow the precedent of related work by building our own.

We run this measurement for 300 repetitions and plot the em-
pirical cumulative distribution function (ECDF) in Figure 6 (lower
bound). The minimum observed latency is under 6ms, with the ma-
jority of samples falling under 9ms. Of this latency, an average of
1.65ms is waiting for the updated gaze sample, and the remaining
is dominated by the time it takes for the display to update (>4ms).

5.2 Foveated Compression Latency
Next, we measure the latency of our gaze-contingent, foveated
compression prototype. There are two important differences in
this experiment compared to the previous lower bound baseline.
First, this experiment includes the computational cost of scaling,
cropping, encoding, and decoding 4K video frames. Rather than
directly changing a portion of a frame from black to white, we use
a synthetic video. This video is black until a saccade is detected,
after which it toggles a portion of the frame to white. Second, this
experiment uses the LG 27GN95B-B monitor, which supports 4K
resolution at 144Hz and has an average of 7.6ms input latency.

We also run this measurement 300 times and plot the ECDF
in Figure 6 (fvideo). On average, our system has ∼5ms longer la-
tency than our lower bound baseline. Of this additional latency,
∼2.8ms comes from the slower display, and the remaining comes
from the computational costs of encoding and decoding the two
video streams. Importantly, our two-stream approach ensures that
the latency of foveated video compression itself is not significantly
longer than the latency of our hardware. An approximate break-
down of where time is spent is annotated in Figure 4. A gaze sample
is taken and sent to the edge server, where a new frame is encoded.
This frame is then sent to the client for decoding and display.

5.3 User Study: Latency vs. Bitrate
We conduct a user study to better understand the relationship be-
tween system latency and how much compression can be achieved
while maintaining similar visual quality. We set up a controlled
laboratory experiment to gather data on perceived video quality
using our low-latency prototype (Section 4).

Because this work is motivated by the challenge of streaming
retina-quality VR video (Section 1), we use a 4K video encoded at
28Mbit/s as a proxy for the video quality of streaming platforms
like YouTube10. In this study, we measure the compressed bitrate
of a video as a function of system latency at the point of equipoise
perceived video quality compared to the baseline.

As stimuli, we use two 4K videos from Derf’s collection [43].
These two videos are selected due to their diverse content, and
each consists of two sub-scenes. The first, barscene, shows one
sub-scene with strong bokeh and another with dialogue between
two individuals that naturally guides a viewer’s gaze. The second,
square_timelapse, shows one sub-scene of a busy crowd of people
where viewers’ gaze typically jumps around the scene, and another
of a city skyline with many hard edges and natural scenery. We
test these videos at three latency conditions. First, we evaluate
our system at its unmodified latency (∼14ms). Then, we select the
minimum and maximum latencies of commercially available HMDs
as measured by Stein et al. [38]: 45 and 81ms. We add artificial
delay to our system to match these latencies.
10Specifically, we use x264 --preset veryfast --bitrate 28000.
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Figure 7: Latency vs. compression, with 95%-confidence in-
tervals. We improve compression by 5× using a simple two-
stream approach. However, the full benefit comes only at
latencies lower than demonstrated by current VR HMDs.

For each video and latency combination, we prepare a set of com-
pression configurations starting at lower resolutions with higher
compression, and moving to higher resolutions with lower com-
pression. We only evaluate 3 latency points and 2 videos, to keep
the study to a reasonable duration.

5.3.1 Experimental Setup. Weuse the system detailed in Section 4.3.
The LG display is set to 3840 × 2160 px and 144Hz. Physically, the
display is 59.67 × 33.56 cm and placed at a distance that gives ∼55°
horizontal field of view, achieving retina-quality resolution. The
participant’s head is stabilized using a chin and forehead rest, and
the eye tracker is placed between the monitor and participant.

5.3.2 Procedure. Each participant was asked to view two videos
and perform the same task on each. The order in which the videos
were presented was equally divided among participants. We first
calibrated the eye tracker and validated the tracking accuracy for
each participant. Then, participants were asked to perform four tri-
als of a matching task. Three of the trials correspond to each latency
points (14, 45, and 81ms), and we randomly repeated one trial to
check for consistency. The order of the trials was also randomized.
Participants were shown a reference video and then asked to select
which of ten comparison videos the reference video is most similar
to in quality for each trial. The ten videos were ordered by increas-
ing video quality. Participants could also choose to respond that
none of the ten were similar in quality. Participants were allowed
to take as long as they wished to make their selection and could
freely navigate and re-watch any of the videos. Each participant did
8 trials, resulting in a study duration of ∼45min (see Appendix A).

5.3.3 Participants. We recruited 13 participants11. All participants
provided written consent before taking part in the study, and the
methods were approved by Stanford’s institutional review board
(IRB). Before each experiment, the participants were briefed about
the purpose of the study and their task. Of these 13 participants,
we excluded 2 participants’ data from the results because we were
unable to achieve a maximum calibration accuracy error <10° (un-
acceptably large compared to the size of the foveal region).

5.3.4 Results. Figure 7 shows the results of our user study. We plot
the mean compressed bitrate as a percentage of the 28Mbit/s base-
line along with the 95 %-confidence interval for each latency. At low
11The COVID-19 pandemic limited the number of participants available for this study.

latency, a simple two-stream approach can compress these videos
to ∼20 % of the baseline while maintaining a similar visual quality.
Despite using a simple algorithm, our results are competitive with
the numbers reported in related work (Section 2.2).

To understand the statistical significance of these differences, we
compute a t-test between both the 14 and 45ms latencies and 45
and 81ms latencies. We find that the difference between the means
of 14 and 45ms is statistically significant (𝑡 = 2.76, 𝑝 = 0.008), while
the difference between the means of 45 and 81ms is not (𝑡 = 0.10,
𝑝 = 0.92). This validates the trend shown in Figure 7.

The latency gap between the fastest and slowest consumerHMDs
is a significant 36ms. However, we find that reducing the latency
from 81ms to 45ms does not significantly improve the required
video bitrate. It is not until we push the system’s latency to below
that of commercially available HMDs that we see an additional ∼2×
compression benefit. This finding also suggests this relationship
is not simply a question of making the foveal region larger as the
delay increases—we suspect there is a distinct phenomenon (and a
compression opportunity) at low latencies.

Related works that mention system latency often do so primarily
to show that the latency is below the ∼50ms budget proposed by
prior work (Section 2). However, our finding not only suggests that
driving down system latency can result in significant compression
gains without changing the compression algorithm itself, but also
that these gains might only be realized with system latencies much
lower than previously proposed budgets.

6 CONCLUSION
We present latency reduction as a method for improving foveated
video compression and validate its potential by implementing a
prototype, ultra-low-latency video streaming system. Our findings
indicate that reducing system latency is greatly helpful to achieving
the levels of compression needed for retina-quality VR content. The
latency budget we describe is tight, but in a model where an edge
server can be located within a few milliseconds RTT of the client,
we believe server-side video rendering at retina quality may become
feasible at practical network throughputs. In concert with future
advancements in VR HMDs and improvements in foveated video
compression, reducing latency may play a critical role in making
retina-quality VR video streaming practical over realistic networks.

It would be useful to know exactly what latency target is required
to realize a significant reduction in transmitted bitrate through gaze-
contingent encoding; that is to say: if reducing latency from current
levels (80ms) to 45ms is not helpful, but reducing to 15ms is very
helpful, then what does the curve look like between 15 and 45ms?
Because of the limitations of our study (whichwas conducted during
the COVID-19 pandemic), we cannot answer these questions today,
but encourage the community to further investigate the tradeoffs
between lowering latency in gaze-contingent video transmission
and resulting bitrate reductions.
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A EXPERIMENT PROCEDURE DETAILS
The procedure of the user study experiment is outlined in Sec-
tion 5.3.2. This section provides additional details relevant to con-
ducting the user study.

The user study was conducted between April 10th, 2021, and
April 17th, 2021. Because of building restrictions associated with the
COVID-19 pandemic, study participants were drawn frommembers
of the Stanford university community who had completed COVID
protocol training and were approved for access to the building. As
described in Section 5.3.3, this resulted in a study population of 13
participants, from which usable data were obtained from 11.

A.1 User Study Instructions
When users arrived to the study, the following instructions were
read to them before they entered the room used for the study.

We are doing a study comparing video compression
techniques. During our study, we will be asking you
to view different versions of two short video clips on
a screen set up with eye-tracking.
Since we are socially distanced, you will enter the
study room by yourself while I sit in the hallway, but
there will be a phone/laptop with a video call active
so that we can communicate throughout the study.
When you enter the room, you will see a workstation
with a headrest mounted to the table. Please be careful
not to trip on any cables that may be in your path as
you enter. Sit down in front of the headrest and rest
your chin on the headrest such that your forehead
is gently touching the forehead mount. Feel free to
use the various knobs to adjust it to a comfortable
position.
We will start off by calibrating the eye-tracker. A grey
screen with a single dot will appear. Let me know once
you are looking at the dot and I’ll start the process,
which will then cycle through a series of dots and
positions. Just look at each one. After the calibration,
we will run it again to validate the accuracy of the
calibration and then you’ll be ready to start the study.

At this point, the person conducting the study paused to allow
the user to ask clarification questions about the instructions given
thus far. After resolving any concerns or questions, they provided
the next instructions.

In the study, we will be asking you to do a matching
task. You will be shown one version of the video (the
comparison video) and then asked to select which of
another set of videos best matches in quality. The set
of videos you will have to choose from are numbered
from 1 to 10, where 1 is rendered with the lowest
quality and 10 the best. The comparison may not be
completely straightforward, since the video artifacts

that you may see could look completely different, but
wewould like you to select the lowest numbered video
at which you do not have a preference over that video
setting and the comparison video. I’ll start by showing
you video 10, the highest quality option, and you can
let me know which video number you would like to
see next (for example, we can binary search). I can
also re-show you the comparison video, or any other
video any time you’d like. Once you’ve decided on
the quality setting, verbally let me know which video
number you would like to select, and we’ll move on
to the next configuration and repeat the process. You
are also welcome to indicate that none of the videos
fit the criteria.
Some quick notes:
• Occasionally, you might see a flash of black at the
beginning of a video for both the reference video
and the different quality videos. Please ignore this
particular bug when comparing the overall quali-
ties.

• Try to keep your head still in the headrest. If you
move significantly (e.g., lift your head from the
position), we will have to re-run a calibration. Since
the position can be a little uncomfortable, if you
need a break at any time, just let me know. I’ll
let you know when we’re switching videos, since
we’ll redo the calibration then anyway so you can
stretch.

Once all of the comparison tasks are complete, I will
take a few moments to verify that your data was
recorded correctly. Then, I’ll let you know when you
can exit the room.

After the instructions were provided, the person conducting the
study once again paused to give the user an opportunity to ask
questions about the task and procedure, and reaffirmed that they
would be able to communicate with us via video throughout the
duration of the study.

A.2 Conducting the Study
Once a user entered the user study room, they sat at a desk with
the eye tracker, display, and chin rest arranged as described in
Section 5.3.1. In addition, there was a mobile phone with an active
video call open facing the user so that the user and the person
conducting the study could communicate. After adjusting the chin
and forehead rest, the user was positioned as shown in Figure 8.

The person conducting the study would then walk the user
through the calibration procedure, operating the Eyelink’s cali-
bration system from outside the room. If minor adjustments were
needed to the position of the eye tracker, the user was instructed on
the adjustments to make via the video call. In some cases, we were
unable to obtain a sufficiently accurate calibration (<10°) compared
to the size of the foveal region. These users were still taken through
the entirety of the study, but their results were filtered from the
data.

During the video selection process, the person conducting the
study would prompt the user which video was being shown (e.g,
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Figure 8: The physical setup of the user study.

"Here is video number 1."), and control video switching remotely.
The user would vocally indicate which videos they wanted to see,
and what selection they ultimately would like to make. Note that
the additional complexity of operating the study from outside the
user study room was required by COVID protocols.
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