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Abstract

Hardware component databases are critical resources in de-
signing embedded systems. Since generating these databases
requires hundreds of thousands of hours of manual data en-
try, they are proprietary, limited in the data they provide,
and have many random data entry errors.

We present a machine-learning based approach for au-
tomating the generation of component databases directly
from datasheets. Extracting data directly from datasheets is
challenging because: (1) the data is relational in nature and
relies on non-local context, (2) the documents are filled with
technical jargon, and (3) the datasheets are PDFs, a format
that decouples visual locality from locality in the document.
The proposed approach uses a rich data model and weak
supervision to address these challenges.

We evaluate the approach on datasheets of three classes
of hardware components and achieve an average quality of
75 F1 points which is comparable to existing human-curated
knowledge bases. We perform two applications studies that
demonstrate the extraction of multiple data modalities such
as numerical properties and images. We show how differ-
ent sources of supervision such as heuristics and human la-
bels have distinct advantages which can be utilized together
within a single methodology to automatically generate hard-
ware component knowledge bases.
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Hardware Component Datasheets
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Figure 1. Hardware component knowledge bases are popu-
lated from datasheets and serve valuable applications such
as cross validation, selecting components based on optimal
electrical characteristics, or building rich search interfaces.

1 Introduction

Creating embedded systems often requires developing new
hardware. Searching for components that best meet system
requirements constitutes a significant portion of design time.
Downloading a datasheet is easy, but figuring out which
datasheet to download is hard. The needed information is
hidden in the datasheet itself, a complex document that is
impenetrable to standard search engines. Requirements are
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(a) Relational data: a keyword search for “Vpos”
and “1” may match 1000s of documents as both
terms are commonly used. Instead, engineers

(b) Jargon: datasheets use extensive technical
jargon such as the symbols highlighted in red.
Understanding a datasheet requires both techni-

(c) Input format: PDF documents lack struc-
tural information (e.g., explicit tables), so rela-
tionships must be inferred from the rendering

want to query relational data, e.g., whether a spe-
cific part has a minimum “Vpgs” value of “1uV”.

cal expertise and deep experience.

of the text, vectors, and images in a document
using cues like alignments, proximity, and sizes.

Figure 2. An example document highlighting the challenges of extracting information from PDF datasheets.

typically multi-dimensional and quantitative, so selecting the
right component involves ranges across multiple properties,
such as voltage, gain, and limits. Finally, there are often
many (e.g., thousands) different versions of a component
with equivalent functionality but differences in cost, energy,
or size. Today’s hardware engineers search by visiting many
different web search pages, delicately tuning parameters on
each one to get a handful (not zero, not hundreds) of results,
manually aggregating the results, then inspecting individual
datasheets for information not available in web search forms.

This laborious process means that quickly designing hard-
ware requires a library of components in one’s head, gained
through deep experience. For people without these years of
experience, hardware design remains a formidable challenge:
maker forums have detailed discussions on picking the right
transistor [1], and entire research papers hinge on careful
hardware component selection [10].

The challenge of finding hardware components are in
stark contrast to the ease of finding good software libraries.
Software library information is easily accessible and search-
able: searches can find easy-to-use libraries such as web
servers, graphics, or data analysis. Searches are textual, so
can be easily answered by crawling documentation, package
descriptions, or community boards such as Stack Overflow.
Any given search typically turns up at most a small number
of well-maintained libraries for a given purpose; there are not
hundreds of graphing packages comparable to matplotlib
or hundreds of secure socket libraries comparable to 1ibss]1.

Hardware component databases are valuable tools for
hardware developers. As shown in Figure 1, applications
and tools can use these knowledge bases to cross-validate
existing databases, answer questions like “which operational
amplifiers should I use to build this gain circuit”, or even to
query non-textual data like product thumbnails.
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Services like Digi-Key, Mouser, and Parts.io help hardware
developers by building proprietary databases: they offer com-
ponent search pages to drive billions of dollars in sales [6].
These databases are generated manually. People who have
enough technical expertise to understand a datasheet (e.g.,
whether Vec and Vdd are interchangeable in a given setting)
enter their data by hand. Human entry, however, is prone to
random errors or errors based on a particular individual’s
biases [9]. Furthermore, these databases are incomplete. The
cost of data entry means that those databases contain a lim-
ited subset of the available information, limited to floating
point numbers or small enumerations (e.g., type of resistor).

1.1 Learning to Construct Component Databases

This paper proposes making hardware component informa-
tion both accessible and cheap by automating the generation
of databases from datasheets using state-of-the-art machine
learning. This problem requires machine learning because
datasheets are complex, richly-formatted documents that
rely on many implicit signals and structures to communicate
information. Addressing datasheet complexity has tradition-
ally required manual human intervention. Extracting infor-
mation from datasheets has three key challenges: relational
data, jargon, and input format. Figure 2 shows examples of
these challenges drawn from a sample datasheet.

First, hardware component information is relational in na-
ture. Users typically want to search for quantitative values of
a variety of electrical characteristics (Figure 2a). This causes
traditional search tools that treat documents as unstructured
text to be ineffective since text-based search alone cannot ad-
equately express these complex relationships and keywords
commonly match 1000s of documents.

Second, datasheets describe components using technical
detail and jargon in a wide variety of ways (see Figure 2b).
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Extracting their data requires capturing this domain knowl-
edge in a learning system and precludes relying on untrained
crowdsourcing services such as Amazon Mechanical Turk.

Third, datasheets are distributed in Portable Document
Format (PDF), and vendors vary significantly in how they
present data using textual, structural, tabular, and visual cues
(Figure 2c). These cues are understandable to humans but
challenging for machines to interpret. Further, the wide vari-
ety and non-uniformity of these cues make them impossible
to address accurately by simply applying heuristics.

1.2 Proposed Approach

We propose a general methodology for automating the gener-
ation of hardware component knowledge bases. Our method-
ology builds hardware component knowledge bases by read-
ing thousands of PDF datasheets of multiple component
types as input and populates relational databases as output.
We use three machine-learning techniques to address the
challenges of hardware datasheets. First, we use a rich data
model that captures the multiple modalities of information
provided in a PDF document, rather than modeling input as
unstructured text. This allows us to encode features based on
textual, structural, and visual information. Second, we use
weak supervision to efficiently translate domain knowledge
into training data. Weak supervision provides us a way to
combine and benefit from a wide variety of signals such as
heuristics and expert human annotations. Third, we train a
model that is robust to the data variety in hardware data-
sheets. Use of machine learning shifts database errors away
from random, human errors toward more systematic errors
that weak supervision can iteratively address and reduce.
Other domains have turned to automated methods for gen-
erating knowledge bases as a solution to making information
accessible [17, 24]. These domains, however, used automated
methods focused on unstructured text. In contrast, hardware
datasheets are richly formatted documents with immense
data variety that present dense numerical, graphical, and
pictorial information written for a technical audience. Our
approach builds on the Fonduer knowledge base construc-
tion framework [23]. We defer a complete description of the
contributions beyond this prior work to Section 2.

1.3 Contributions

This paper makes three contributions:

1. A general methodology for building hardware compo-
nent knowledge bases using state-of-the-art machine-
learning techniques (Section 3).

2. The evaluation of our methodology for automating the
generation of hardware component knowledge bases
for multiple hardware components, extracting both
textual and non-textual information (Section 4).

3. Application studies that highlight how these databases
make hardware component selection easier (Section 4.3).
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2 Background and Related Work

Component databases are a key resource in embedded hard-
ware development. Generating these databases is laborious
and error-prone. Experts with sufficient technical knowl-
edge to read datasheets must be used to enter data. As a
result, these databases are small unless they are proprietary
databases owned by large component search companies.
Their small size limits the practical utility of many tools [2,
11, 18, 19]. For example, Drew et. al. presented a tool for auto-
matically checking breadboarded circuits, but its underlying
knowledge base only supports six types of components [7].
Similarly, Ramesh et. al. demonstrate that with a database of
components, one can automatically produce an embedded
device hardware design from software, but defer generating
a sufficient library to future work [20].

Recent developments in machine learning and knowledge
base construction have demonstrated success in automating
the creation of queryable knowledge bases in domains such
as paleontology, electronics, and genomics [23]. We build on
this prior work and apply these techniques into the domain
of supporting embedded system development by targeting
hardware component knowledge bases, which have great
value but are error-prone and laborious to produce.

2.1 Knowledge Base Construction

The process of knowledge base construction takes a corpus
of documents as input and outputs a relational database with
a user-defined schema. This database is populated using
information extracted from the input documents. We use the
following terminology to describe the process.

A mention, m, represents a noun, i.e., a real-world person,
place, or thing, which can be grouped and identified by its
mention type, T. For example, “part number” is a mention
type, while “BC546” is a corresponding mention. A relation-
ship of n mentions is an n-ary relation, R(my, mo, . .., my),
which corresponds to a schema, Sg(T1,Ts, . .., T,). A can-
didate is an n-ary tuple, ¢ = (my, mo,. .., my), which rep-
resents a potentially correct instance of a relation R. For
instance, a “part number” and a “price” represent a relation
with a schema, Sg(T1, Tz), where “BC546” and “$1.00” repre-
sent a candidate, ¢ = (my, mo), of a 2-ary relation, R(m1, ms).

In order to automate knowledge base construction, machine-
learning-based systems model this process as a classification
task. Candidates are extracted from the input documents
and assigned a Boolean random variable where a true value
signals that the candidate is a valid instance of a relation.
In order to make that determination, each candidate is as-
signed a set of features as signals for which Boolean value
a classifier should assign. Then, these systems maximize the
probability of correctly classifying each candidate based on
its features and a set of examples, called training data.

Ultimately, a supervised machine-learning algorithm re-
quires three inputs: (1) candidates, (2) their features, and (3)
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Figure 3. An overview of our methodology for automating the generation of hardware component knowledge bases.

training data. It then outputs a marginal probability for each a feature library which captures signals from multiple modal-
of the input candidates. Finally, users specify a threshold ities of information (e.g., textual, structural, tabular, and vi-
for the output marginal probabilities. We classify candidates sual), and a rich data model for each document that we utilize
whose probability of being true is greater than the threshold for weak supervision in the form of labeling functions.
as true, and vice versa. We quantify our results using an F1 While [23] showed that extracting information from PDF
score, which is the harmonic mean of the precision (the datasheets is possible by extracting a few numerical values
ratio of candidates classified as true which are correct) and from transistor datasheets, this paper goes beyond their work
recall (the ratio of correct candidates classified as true). in three ways. First, where Wu et al. showed that extracting
component information was possible, we provide a practical
2.2 'Weak Supervision methodology that details how to do so. Second, we show
Training data is a vital input for knowledge base construc- that our approach is generalizable by extracting hardware
tion systems powered by machine learning. Traditionally, component information from three different types of com-
training data was incredibly costly to obtain, since it required ponents, and by extracting both graphical and textual data,
domain experts to tediously label data. In recent years, weak whereas Wu et al. only show extraction of textual data from
supervision has emerged as a popular technique for generat- a single component. Third, our work demonstrates applica-
ing training data. Weak supervision takes the approach of tions end-to-end, from dataset creation to application studies
getting multiples sources of potentially lower-quality labels that use these knowledge bases, whereas Wu et al. focus on
more efficiently, such as crowdsourcing [12, 25], leveraging the creation of the knowledge base alone.

existing knowledge bases [14], or using heuristics [21].
Users provide weak supervision in the form of labeling 3 Methodology

functions. A labeling function takes each candidate as input, We divide the process of generating hardware component
and labels it as true, false, or abstains from voting. Labeling knowledge bases into three phases: (1) gathering datasets, (2)
functions can use arbitrary heuristics, which allows them to pre-processing candidates and features as the static inputs to
capture a variety of weak supervision approaches. Because a machine-learning model, and (3) iterating until we achieve
each labeling function can abstain from voting, each labeling the desired quality (Figure 3). We highlight challenges and
function will potentially cover different subsets of the input hard-earned best practices for each phase. The implementa-
data and, due to the varying quality of the weak supervi- tion of each computational block of the pipeline (e.g., parsing,
sion sources, may conflict with each other. We then follow candidate extraction, featurization, etc.) is detailed in [23].
the data programming paradigm [22] by using a generative

probabilistic model to estimate the accuracy of each labeling 3.1 Phase 1: Gathering Datasets

function. These estimates are applied as weights to the out-
put of each labeling function, resulting in a final probabilistic
label for each candidate that can serve as training data. With
this approach, rather than relying on manual labels alone,
we can combine manual labels with programmatic heuristics
and iteratively generate large amounts of training data.

Generating hardware component knowledge bases begins
with a high quality corpus of documents. Specifically, we
require a corpus of documents that allows us to capture
non-textual signals like document structure, and we require
accompanying gold labels in order to evaluate the final qual-
ity of the knowledge base.

2.3 The Fonduer Framework Acquiring Document Metadata The majority of manu-

We build upon the work of Fonduer, which provides a frame- facturers distribute hardware datasheets as PDF documents.
work for extracting candidates from richly formatted data These datasheets contain tables of relational information.
such as PDF datasheets [23]. In particular, Fonduer provides However, unlike HTML or XML documents, which contain
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structural metadata, PDF documents only contain characters,
vectors, and images, and their rendering coordinates. While
a datasheet may visually present data in a structured table,
the underlying format contains no explicit metadata about
document structure. We require supplementary metadata
in addition to the raw characters, vectors, and images con-
tained within a document. To satisfy this requirement, we
use Adobe Acrobat to acquire metadata by generating an
HTML representation for each PDF document!. While the
conversion process introduces noise, the HTML metadata
provides valuable information about document structure that
complements the visual information in the PDF.

Preparing for Evaluation To evaluate the quality of the
final knowledge base, we must have gold labels, or ground
truth labels, which we can compare against (e.g., by calculat-
ing an F1 score). Because it is typically infeasible to obtain
a large amount of gold labels, we instead only acquire gold
labels for a small but representative subset of the input cor-
pus. This subset is further divided into a set used for error
inspection during development, and to a set used to assess
generalization during final validation.

3.2 Phase 2: Pre-process Static Inputs

Machine-learning algorithms require two static inputs: can-
didates and their features. The third input, training data, is
iteratively generated and refined in Phase 3. To generate
candidates and features, we must (1) parse the input corpus
into a richly formatted data model, (2) extract candidates,
and (3) featurize each of these candidates.

Parsing Manufacturers distribute datasheets as richly for-
matted PDF documents that convey information through
textual, structural, tabular, and visual cues. Therefore, it is
vital that we preserve this rich metadata when we parse
these documents into a data model. Each subsequent step in
the methodology relies on the data model. Implementations
where input documents are parsed as unstructured text will
lack information like tabular or visual alignments, which are
vital in determining whether a candidate is correct.

Candidate Extraction Recall from Section 2 that we de-
fine candidates as an n-ary tuple of mentions, each of which
belong to a particular mention type. To extract candidates,
we first define mention types for each of the mentions in the
candidate, then we extract the cross product of all mentions
of each type to form candidates. Because of this cross prod-
uct, there can be a combinatorial explosion of candidates,
most of which are false. To combat this class imbalance and
improve performance, we apply filters at both the mention
and candidate levels. For example, if a mention type is a
numerical value, we can filter at the mention level by con-
straining mentions to numerical values within a specific

Prior work has explored different approaches for extracting subsets of this
metadata directly from PDF documents [5, 13, 16], but challenges remain.
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range. At the candidate level, we can filter based on the can-
didate as a whole, e.g., discarding candidates in which all
of its component mentions are not on the same page of the
document. This highlights a fundamental tension between
optimizing for system performance and optimizing for end-
to-end quality. If we do not filter any candidates, there is an
extreme class imbalance towards negative candidates that
lowers end-to-end quality. Filtering improves performance
by reducing the number of candidates considered and helps
reduce the class imbalance. But, after a certain point, addi-
tional filtering lowers overall recall and subsequently, also
decreases end-to-end quality.

Featurization Next, we featurize each of the extracted
candidates using the default set of features provided by Fon-
duer [23]. Fonduer leverages the data model to compute
features that capture signals from multiple modalities of in-
formation, such as structural, tabular, and visual features
in addition to standard natural-language features such as
part-of-speech and named-entity-recognition tags. It then
creates a feature vector for each candidate indicating which
of the features each candidate expresses. In our experience,
we find that final end-to-end quality is best when features
from all modalities are present.

3.3 Phase 3: Iterative Knowledge Base Construction

Finally, we use labeling functions to unify multiple sources
of supervision, such as heuristics and human labels, which
allow us to systematically capture domain expertise. These
labeling functions are then used to generate training data
used to train a machine-learning classifier. However, because
each of these sources may have differing levels of quality, we
iteratively refine them, and, in turn, also refine our training
data, to achieve an acceptable quality of training data. We
then train a discriminative model with this training data to
generate final knowledge bases. With this approach, we have
a classic classification problem and can apply logistic regres-
sion? for text-based relation extraction and a convolutional
neural network for image-based relation extraction.

To aid in this process, we provide three best practices for
developing labeling functions for hardware datasheets. First,
use labeling functions that operate on multiple modalities of
information. For example, do not rely on labeling functions
that use tabular information alone to determine alignments;
use visual alignment as well. Using multiple modalities helps
leverage the redundant information in the underlying data,
resulting in more robust supervision.

Second, class imbalance (where there are many more neg-
ative candidates than positive candidates) is a prevalent chal-
lenge. Because of this imbalance, labeling functions should
output true-else-abstain, or false-else-abstain, and should
not output true-else-false or vice versa. Labeling functions

’Due to the high sparsity of the features, we use the sparse version of
logistic regression to reduce memory usage during training.
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Table 1. Summary of the datasets used in our evaluation
based on their size, number of documents, average number of
pages per document, and the number of relations extracted.

Dataset Size #Docs #Pgs/Doc #Rels
Bipolar Junction Transistors 3GB 7.0k 5.5 4
Circular Connectors 3GB 5.1k 3.2 1
Operational Amplifiers 5GB 3.3k 233 2

that do not abstain typically have large amounts of conflicts,
which lowers the computed weight for that labeling func-
tion. Instead, repurpose accurate labeling functions that label
true-else-false as filters during candidate extraction.

Third, when debugging and developing labeling functions,
evaluate them on the development set, not the test set. Tune
and refine the labeling functions by inspecting the true pos-
itive, false positive, and false negative candidates. Prefer
labeling functions that compensate for class imbalance, and
only include labeling functions that are accurate greater than
50 % of the time. Typically, fewer than 20 accurate labeling
functions are sufficient to achieve high quality.

4 FEvaluation

In this section, we evaluate our methodology and examine
end-to-end quality and scalability. We perform application
studies that illustrate how these datasets can be used to make
hardware component selection easier.

4.1 Evaluation Setup

We evaluate our methodology using three distinct datasets:
bipolar junction transistors, operational amplifiers, and cir-
cular connectors. We extract relations from each dataset.

4.1.1 Datasets

Table 1 shows a summary of our three datasets, primarily
sourced from Digi-Key. All of the documents in each dataset
are processed to evaluate end-to-end quality (Section 4.2.1).
Datasheets were selected by downloading all of the PDF
datasheets available on Digi-Key in the respective product
category. Datasheets which were duplicates, corrupted (i.e.,
could not be processed by Adobe Acrobat), or required op-
tical character recognition (OCR) were filtered out. These
datasets represent immense data variety in terms of both
format and style from many manufacturers, who used over
285 unique versions of software tools to author these data-
sheets, ranging from general purpose tools like Microsoft
Word and OpenOffice, to more specialized tools like TopLeaf,
QuarkXPress, and AutoCAD.

Transistors Transistors are one of the most commonly
used and fundamental electrical components. Posts on se-
lecting the correct transistor frequently appear on maker fo-
rums [1]. We select transistor datasheets from over 20 unique

168

Luke Hsiao, Sen Wu, Nicholas Chiang, Christopher Ré, and Philip Levis

manufacturers and extract four binary relations primarily
contained within tables: minimum and maximum storage
temperatures, polarity, and maximum collector-emitter volt-
ages, along with their associated part numbers. Our output
is four database tables with the schema (document, part
number, attribute value, probability). We use this dataset to
evaluate how our methodology performs using heuristics as a
weak supervision source.

Operational Amplifiers [10], required an operational am-
plifier with very specific characteristics. To find potential
parts, Huang et al. scraped Digi-Key to explore the trade-
off between two electrical characteristics. In contrast, we
generate that knowledge base using our machine-learning
approach. Operational amplifiers are more complex and de-
scribed by datasheets that are 4 X longer on average than
transistors. We assess datasheets from over 30 unique manu-
facturers and extract two unary relations, the gain bandwidth
product and the quiescent current, in order to compare our
result with that in [10]. Our output is two database tables
with the schema (document, attribute value, probability). We
use this dataset to evaluate our methodology on using human
labels as a weak supervision source.

Circular Connectors Circular connectors, the third largest
category of items on Digi-Key with over 490 000 products
from 50 manufacturers, provides a diverse dataset. The sheer
number of circular connectors makes it difficult to quickly
find the right one, especially since the most important infor-
mation about circular connectors are not numerical values,
but how they look. To that end, we extract a single, non-
textual, unary relation—thumbnail images—and output a
database table with the schema (document, thumbnail, prob-
ability). We use this dataset to evaluate our methodology when
extracting non-textual information like images.

4.1.2 Evaluation Metric

We evaluate the end quality of our knowledge bases using
precision, recall, and F1 score, defined as follows:

tp

precision = (1)
tp+ fp
Ip
11 = 2
reca — (2)
F129x precision X recall 3)

precision + recall

where:
tp = True positives. How many candidates predicted to
be positive are true.
fp = False positives. How many candidates predicted to
be positive are false.
fn = False negatives. How many candidates predicted to
be negative are true.
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Table 2. End-to-end quality in term of precision, recall, and
F1 score for each dataset.

Dataset Relation Prec. Rec. F1
Min. Storage Temp. 1.00 0.58 0.74
Trans Max. Storage Temp. 095 0.61 0.74
’ Polarity 0.88 0.92 0.90
Max. Collector-Emitter Volt. 0.85 0.77 0.81
Gain Bandwidth Product 0.72 0.76 0.74
Op. Amps. .
Quiescent Current 0.65 0.54 0.59
Circ. Conn. Product Thumbnails 0.63 0.83 0.72

4.1.3 Implementation Details

We implemented our approach in Python, using Fonduer
0.6.2, and PostgreSQL 9.6.9 for database operations. We used
a machine with 4 physical CPUs (each of which was a 14-
core 2.4 GHz Xeon E4-4657L), 1 TB of memory, 2 X NVIDIA
GeForce TITAN X GPUs, 12 x 3 TB disk drives, and Ubuntu
16.04.3 as the operating system. We used Adobe Acrobat Pro
to generate an HTML representation for each PDF document
to support structural features. See Appendix A for details on
how to access the datasets and our implementation online.

4.2 Evaluation Results

We perform several experiments to evaluate our methodol-
ogy in terms of end-to-end quality and performance.

4.2.1 End-to-End Quality

Table 2 shows the precision, recall, and F1 score of each of
the relations we extract from each dataset. We achieve, on
average, 75 F1 points. Unlike large manually created knowl-
edge bases that have been cultivated and curated for years,
our knowledge bases were created in a matter of weeks. As
expected, we achieve lower F1 scores for relations that are
more complex. In the transistor dataset, for example, we
achieve 90 F1 points for transistor polarities, which take one
of two values: “NPN” or “PNP”, and usually apply to all parts
on a datasheet. However, our score for operational ampli-
fier quiescent currents is only 59 F1 points. This is because
quiescent current typically differs for each part listed in a
datasheet and is often associated using visual alignments
alone which makes them more sensitive to noise.

In addition, we find that using heuristics as a weak su-
pervision source generally results in higher precision, but
lower recall (as shown in the transistor dataset), while us-
ing human labels as a weak supervision source results in a
relatively higher recall to precision ratio (as shown in the
operational amplifier dataset). The reason for this is twofold.
First, providing supervision using heuristics inherently tar-
gets specific patterns or features in the data (e.g., that two
words are in the same tabular row). Consequently, the ma-
chine learning model learns a signal more precisely since
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Figure 4. Relative end-to-end runtime for each computa-
tional stage when scaling the number of documents from
the transistor dataset for a single relation extraction task.
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Figure 5. Relative end-to-end runtime for each computa-
tional stage when scaling the number of relations extracted
from 1000 documents of the transistor dataset.

the heuristic is applied systematically across the dataset, but
may return lower recall since other signals are not directly
considered. In contrast, providing human annotations for su-
pervision inherently targets specific candidates, not patterns.
As a result, human labels will typically cover a more broad
set of features resulting in higher recall, yet potentially at
the cost of lower precision (see Section 4.4).

4.2.2 Scalability and Performance

We perform two experiments to evaluate the scalability and
performance of our methodology. In Figures 4 and 5, we
show examples of the end-to-end runtime that each com-
putational step of our methodology requires. By rerunning
weak supervision and classification alone, we incrementally
refine our generated training data. This fine tuning allows
amortization of the costs of parsing our corpus, extracting
candidates, and featurizing those candidates.

Parsing scales with the number of input documents, while
candidate extraction, featurization, weak supervision, and
classification scales with the number of candidates. Figure 4
shows the relative end-to-end runtime when scaling the
number of input documents from the transistor dataset. In
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Table 3. Quality of our approach vs. Digi-Key for available
relations compared to ground truth data.

Relation Source Prec. Rec. F1
. Digi-Key 100 0.67 0.80
Pol.
olarity Our Approach 094 0.94 0.94
Digi-K 5 . .
Max Collector-Emitter Volt. - o) 0.97. 067 079
Our Approach  0.75 0.77 0.76
. . Digi-Key 091 062 074
Gain Bandwidth Product
an Bandwidti Froduet - our Approach 088 0.84 0.86
. Digi-Key 0.93 045 061
tC t
Quiescent Curren Our Approach  0.89 0.80 0.84

Figure 5, we measure the end-to-end runtime of each com-
putational step when increasing the number of relations
extracted from 1000 documents of the transistor dataset. In-
creasing the number of relations or the number of documents
parsed are proxies for increasing the number of candidates.
From these figures, we see that our methodology scales sub-
linearly with documents and relations.

The end-to-end runtime across our datasets was on the
order of 10s of hours; this allows us to generate hardware
component knowledge bases in a matter of weeks. Our im-
plementation has significant room for optimization to reduce
the iteration time required to build these knowledge bases.
Optimization efforts could lower system requirements below
the thresholds currently needed to process large datasets.

4.2.3 The Benefits of a Machine Learning Approach

The process of manually creating large knowledge bases
like Digi-Key is expensive and prone to human error. We
compare our generated knowledge bases with Digi-key on
four relations from a small set of transistor and operational
amplifier datasheets using ground truth labeled by domain
experts. Of the relations we extract, only these four relations
are present in Digi-Key’s database. Consequently, only these
four relations can be directly compared.

On average, we improve on the quality of Digi-Key’s
knowledge base by 12F1 points, primarily by improving
recall by 24 % while only losing about 9 % in precision (Ta-
ble 3). Digi-key outperforms our approach in terms of F1
score when extracting maximum collector-emitter voltages.
This is primarily due to noise introduced during PDF parsing
(see Section 5). For example, in Figure 6, some PDF parsers
may ignore vertical alignments for the cells boxed in blue,
and instead collapse all those values into a single sentence
per cell. This results in inaccurate structural information,
which makes it challenging to correctly associate part num-
bers with their attribute values.

By inspecting these discrepancies we find that errors in
Digi-Key data for these relations fall into three categories.
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Symbol Rating Rating Unit
Veeo | CollectorEmitter Voltage | TIP29, TIP30 40
TIP29A, TIP30A 60 v
Vceo Collector-Base Voltage TIP29B, TIP308 80
TIP29C, TIP30C 100

Figure 6. Non-textual signals like alignments are vital in
associating parts and attribute values.

Parameter Symbol Limit Unit
Collector-base voltage Vego -160 \
Collector-emitter voltage V(BR)CEX -160 \
Collector-emitter voltage Vceo -145 \%

Figure 7. Ambiguous datasheets lead to human errors.

1. Recall: In 66 % of these discrepancies, Digi-Key only
extracts a subset of the parts or values described in
the datasheet. For example, a datasheet may express
multiple valid gain values based on how an amplifier is
configured, but Digi-Key only extracts one of multiple
valid gain values for each amplifier.

2. Neglecting hierarchy: In 29 % of discrepancies, Digi-
Key ignores part family information. For example, fail-
ing to relate a value to a part family as a whole (e.g.,
BC546), when all the children of that part family (e.g.,
BC546A, BC546B, BC546C) share a value.

3. Inconsistent interpretation: 5% of the discrepancies
occur because Digi-Key interprets a value inconsis-
tently. For example, both Vipr)cex and Vcgo, can be
generally referred to as a “collector-emitter voltage”.
Ambiguity may cause human annotators to uninten-
tionally extract the wrong value (Figure 7).

Importantly, these error classes are not systematic; they
do not follow a regular, consistently applied pattern. Further,
these error classes can also vary depending on the individual
inputting data. In contrast, a machine-learning approach
shifts the class of errors from random to systematic, which
can be readily identified and reduced.

Using information posted on websites like Digi-Key is
common practice, but this study also highlights how supplier
summaries are limited when used as a hardware component
knowledge base. Specifically, supplier summaries are, often
by design, not exhaustive. Instead, these supplier summaries
focus on the components carried and sold by the supplier,
and may only represent a biased fraction of all available
components. While these summaries typically maintain very
high precision, this selectivity also significantly limits their
recall and, consequently, their use as a general hardware
component knowledge base.

4.3 Application Studies

In this section, we study two example applications powered
by our hardware component knowledge bases, and demon-
strate how these machine-generated knowledge bases make
hardware component selection easier.
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Digi-Key
Our Approach

10°

10! 10°
Quiescent Current (uA)

Figure 8. We recreate the figure in [10] using our machine-
learning approach and find that we largely overlap with the
human-curated data published by Digi-Key.

4.3.1 Electrical Characteristic Analysis

Analyzing electrical characteristics is a key part of the pro-
cess of selecting hardware components. [10] found that the
key to their sensor device was the capacity to detect an ul-
trasonic signal reliably and accurately within a constrained
power budget. To accomplish this, they needed a series of
operational amplifiers that could provide 1000 X gain, and
were highly motivated to minimize the number of opera-
tional amplifiers used in their circuit in order to minimize
noise and physical size.

To aid their search, they performed a survey of operational
amplifiers by scraping information from Digi-Key, and plot-
ted the gain bandwidth product against the quiescent supply
current of each amplifier. Their data is shown in Figure 8
in blue. We extract these same two electrical characteristics
from our dataset of operational amplifier datasheets. We fil-
ter each characteristic independently using a threshold of
0.75. Then we combine the results based on their reading-
order appearance in their datasheets and plot our results
in orange. Our plot contains fewer data points because we
only extract data from a subset of the operational amplifier
documents on Digi-Key.

We largely overlap with the data published by Digi-Key.
Based on a sample of the outliers, we find that these outliers
result from both errors in Digi-Key’s database (e.g., marking
a value as kHz rather than MHz) and errors in our output
(e.g., misclassifying an erroneous current value as quiescent
current). However, with a machine-learning approach, these
errors are more systematic in nature, and so can be more
readily identified and corrected. [10] ultimately selected a
Micrel MIC861/863, which has a gain of 400 kHz and a qui-
escent current of 4.6 pA. Using our dataset, we are able to
identify—with the correct gain bandwidth product and qui-
escent current values—the same families of amplifiers as
potential candidates. While both Digi-key and our database
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Figure 9. An example of a circular connector datasheet that
contains an image of a product thumbnail.

are imperfect, this first-order analysis suggests that our ap-
proach can generate queryable knowledge bases at scale and
with human-like quality, which can serve as a powerful foun-
dation for analysis tools. Our approach can also be applied
to new domains, where existing databases may not exist.

4.3.2 Enabling Multimodal Search

With over 490 000 products listed, circular connectors are
the third largest product category on Digi-Key. Unlike tran-
sistors or operational amplifiers, one of the most important
characteristics of circular connectors is their appearance.
Without hardware component knowledge bases, the process
of finding a compatible connector would require searching
for and tediously inspecting the contents of each datasheet.

We extend Fonduer to go beyond traditional text extrac-
tion and demonstrate that our approach can be applied to ex-
tract non-textual information like images of product thumb-
nails (Figure 9). We use a convolutional neural network to
extract signals from pixel-level information to identify and
classify product thumbnails directly from datasheets. More
specifically, we select a pre-trained ResNet-18 network pro-
vided by torchvision® and refine its weights based on our
dataset. We achieve 72 F1 points on this task and produce
a database of product thumbnails that can be used to make
component selection easier. We argue that our methodology
can be applied with similar effectiveness to both textual in-
formation and images; further, it may prove to be effectively
extended to additional information modalities.

4.4 Discussion

Traditionally, machine-learning systems rely on large amounts
of manually labeled data. In response, techniques like weak
supervision, which typically use heuristics and human an-
notations to programmatically generate training data, have
risen in popularity.

3https://github.com/pytorch/vision
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Figure 10. Our methodology benefits from using both the
recall of human annotations and the systematic consistency
and precision of a heuristics-based weak supervision.

From our experiments, we observe that heuristic-based
supervision and human annotations have distinct character-
istics that give rise to unique advantages. Human annotators
operate in the context of candidates; they identify specific
instances of true or false candidates. This provides sparse,
but precise information that is agnostic to the underlying
features or patterns of the candidates. In contrast, heuristic-
based supervision operates in the context of patterns. For
example, entire subsets of candidates might be labeled true or
false based on a pattern they share. As a result, these heuris-
tics operate precisely based on the underlying features.

These characteristics are shown in Figure 10. In this fig-
ure, each square represents a candidate. Each candidate in
a document has key signals, or features, that correspond
to underlying patterns associated with the candidate. Hu-
man annotations provide true and false labels for individual
candidates and often cover a wide range of signals that a
machine-learning model can learn from. In contrast, heuris-
tics are applied strictly based on key signals and only label
those exact signals with precision.

In support of this intuition, we find that the heuristic su-
pervision used in the transistor dataset results in higher
precision, while the human annotations used in the opera-
tional amplifier dataset results in higher recall (Table 2). In
light of these observations, we propose that a joint approach
leveraging the benefits of both supervision from heuristics
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Figure 11. Real-world examples of formatting challenges
that the techniques of our methodology do not address.

and supervision from human annotations successfully in-
corporates the advantages of each individual approach. For
example, when certain candidates are difficult to label heuris-
tically, even a small amount of precise human annotations
can provide sufficient signal for a machine-learning model
to learn from and apply systematically.

5 Future Work

Our methodology is effective for building hardware com-
ponent knowledge bases of relational information, such as
electrical characteristics and their values listed in datasheets.
However, several important limitations remain which we
highlight below to guide future work.

5.1 Parsing PDF Documents

PDF documents are the de facto standard for publishing
hardware component information. As the primary input, any
noise or errors introduced during the PDF parsing process
propagate through the rest of the pipeline and negatively
affect quality. In the context of datasheets, PDF parsing tools
do not fare well in at least three challenging scenarios.
First, PDF documents consisting of scanned images requir-
ing OCR (e.g., Figure 11a) introduce noise that is difficult
to eliminate downstream. For example, OCR software may
interpret a scanned document containing the text “50 °C” as
“50 0C”, “500C”, or even as “5000” depending on the quality
of the original scan and the quality of the OCR software.
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CLASSIFICATION A B
BC856 125~250 220~475
hee BC857 125~250 220~475
BC858 125~250 220~475

(a) Relationships to specific parts are implied by column headers alone. This
example table is specifying that BC856A, BC857A, and BC858A have an hrg
of 125~250, while those with a B suffix have a value of 220~475.

PBO 1@ 6 PB3
Power Digital Analog
GND 2 5 VCC . D .
[ clock [fionD
PB1 3 4 PB2

(b) Relationships may also be specified using color matching.

Figure 12. Real-world examples of implicit relationships not
addressed by these techniques.

Second, because PDF merely specifies characters, vectors,
or images and the locations to render them, even native-
digital PDF documents that include text as vectors rather
than characters can cause OCR issues. For example, some
manufacturers publish datasheets where, rather than in-
putting text as characters, they render text as vectors, result-
ing in documents that contain little to no text (Figure 11b).

Third, manufacturers author datasheets using a gamut of
software tools and design them to be understood visually
by readers. Recall that our methodology leverages structural
information, such as tabular alignment, in a document. To
extract this metadata, we pair PDF documents with a more
structured format like HTML. When datasheets break the
assumptions of common PDF parsing tools, such as allowing
content to cross cell borders (Figure 11c), parsers introduce
additional errors which degrade the resultant data quality.

5.2 Understanding Implicit Relationships

A further challenge left for future work is understanding
information that is implicitly expressed in a document. For
example, a document header may contain “BC546...547A/B”,
rather than explicitly listing “BC546A, BC546B, BC547A,
BC547B” as part numbers. In this case, we must implicitly
understand how to expand and associate these part numbers
and suffixes. Some datasheets also use these suffixes in isola-
tion to reference a family of part numbers (Figure 12a). This
challenge is exacerbated when relationships are expressed
using color coding or symbolic legends (Figure 12b).

5.3 Tooling and Performance

Tooling and implementation performance are additional ar-
eas ripe for future work. The process of manually labeling
gold data for the development and testing sets is a tedious
process that could be greatly optimized with improved tool-
ing. For example, in contrast to the common workflow of
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users having to enter information into a spreadsheet, tools
could reduce the tediousness of manual labeling by present-
ing users candidates and allowing users to directly mark the
candidates true or false.

Also, due to architectural limitations, our implementation
has performance bottlenecks (Section 4). The current archi-
tecture of our implementation scales vertically; this requires
use of a machine with computing power and memory suffi-
cient to run large datasets. Using a distributed architecture
such as Ray [15] would allow our approach to scale horizon-
tally and leverage modern cloud computing platforms.

5.4 Open Information Extraction

Our methodology extracts precise, pre-defined relations from
the corpus of documents. This requires the user to explicitly
define relations to extract and create new labeling functions
and gold data for each relation. This process scales linearly
with the number of target relations. In response, researchers
have proposed techniques in open information extraction
for extracting large sets of relations without requiring pre-
defined specifications [3, 4, 8]. However, these techniques
do not yet support richly formatted data such as hardware
component datasheets.

6 Conclusion

Embedded system design productivity benefits from hard-
ware component information that is both available and acces-
sible. Unfortunately, troves of hardware component informa-
tion is inaccessibly locked away in datasheets. We present
a general methodology for automating the generation of
queryable hardware component knowledge bases directly
from their PDF datasheets. We use state-of-the-art machine-
learning techniques based on weak supervision to overcome
some of the known challenges of extracting relational infor-
mation from richly formatted datasheets.

Our approach leverage domain expertise from both heuris-
tics and human labels. Utilizing weak supervision, we com-
bine benefits from the sparse but accurate signals of human
annotations with the precise and systematic application of
heuristics to yield a more robust and effective method of
generating knowledge bases.

We evaluate our methodology by applying it to a dataset
of over 15000 PDF datasheets for transistors, operational
amplifiers, and circular connectors. We extract multiple re-
lations and multiple modalities of information from these
datasheets such as numerical values from tables, text from
paragraph descriptions, and images of product thumbnails,
achieving an average of 75F1 points. On average, we im-
prove recall by 24 % at a cost of 9% in precision and find
that our methodology improves on existing human-curated
knowledge bases by 12 F1 points.
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A Artifact Appendix
A.1 Abstract

This artifact provides a Python package and datasets which
can be used to replicate our methodology for automating
the generation of hardware component knowledge bases.
We describe how the software and datasets can be obtained,
how the software and dependencies can be installed, and
how the software can be used to run our experiments. Our
artifact outlines the workflow from the input data (PDF and
HTML documents, along with gold labels) to the final quality
metrics we used to evaluate the approach. We also include
scripts used for our analysis and performance experiments.

A.2 Artifact Checklist (Meta-Information)

e Program: We provide several Python and bash scripts.
Data set: PDF/HTML datasets for transistor, operational
amplifier, and circular connector datasheets provided. See
Table 1 for descriptions (approx. 3.5 GB compressed).
Run-time environment: We evaluated on Ubuntu 16.04.3,
using Python 3.6 and PostgreSQL 9.6.9. We use Fonduer 0.6.2
as a weak supervision framework.
Hardware: We used a machine with 4 physical CPUs (each
of which was a 14-core 2.4 GHz Xeon E4-4657L), 1TB of
memory, 2 X NVIDIA GeForce TITAN X GPUs, 12X 3TB
disk drives. However, a modern consumer-level machine
without a GPU can also be used to validate results by scaling
down the size of the dataset.

e Execution: Python programs with command-line interfaces.

e Metrics: Quality (F1 score, precision, recall) and runtime.

Output: PostgreSQL databases and log files containing tim-

ings and metrics. Database information is also exported to

comma-separated values (CSV) files for convenience in anal-
ysis and visualizations.

e Experiments: End-to-end quality, runtime when scaling
number of documents and number of relations.

e How much disk space required (approximately)?: 50 GB
for all software, full datasets, and full databases. 12 GB for
just the software and raw, uncompressed datasets.

e How much time is needed to prepare workflow (ap-
proximately)?: 30 min.

e How much time is needed to complete experiments
(approximately)?: Depends on hardware and the portion
of the dataset used. Approximately 3 d for the full datasets of
all components, however results can be validated on smaller
datasets taking on the order of 10 h.

e Publicly available?: Yes.

e Code licenses (if publicly available)?: MIT License.

Data licenses (if publicly available)?: Creative Commons

Attribution Non Commercial Share Alike 4.0 International.

Workflow framework used?: No CK framework used. Used

manual execution of scripts.

Archived (provide DOI)?:

— Dataset DOI: https://doi.org/10.5281/zenodo0.2647543.

— Software DOL: https://doi.org/10.5281/zenodo.2647667

Luke Hsiao, Sen Wu, Nicholas Chiang, Christopher Ré, and Philip Levis

A.3 Description
A.3.1 How Delivered

Our software (source code, documentation, and scripts) are
available on GitHub: https://github.com/lukehsiao/lctes-p27.

A.3.2 Hardware Dependencies

We recommend testing on a server with 16 or more cores,
64 GB or more of memory, and an NVIDIA GPU. We used
a machine with 4 physical CPUs (each of which was a 14-
core 2.4 GHz Xeon E4-4657L), 1 TB of memory, 2 X NVIDIA
GeForce TITAN X GPUs, 12 x 3 TB disk drives. However, a
high-end, consumer-grade machine (e.g., quad-core, 32 GB
of memory, no GPU) is also sufficient to validate our experi-
ments in a reasonable time on a subset of the datasets.

A.3.3 Software Dependencies

We recommend Ubuntu 16.04.3, Python 3.6, Fonduer 0.6.2,
PostgreSQL 9.6.9, and Poppler Utilities 0.36.0 or greater. We
have only tested our software on an x86-64 system and our
instructions assume these minimum versions.

A.3.4 Datasets

Our datasets are publicly available and archived using Zen-
odo. Our software includes helper scripts to download and
unpack these datasets for each hardware component. You
must navigate to each subcomponent directory before run-
ning the script. For example, start in the root of the repository
and run the following to download the transistor dataset:

1 $ cd hack/transistors/
2 $ ./download_data.sh

Each dataset is already divided into a training, development,
and testing set. Manually annotated gold labels are provided
in CSV form for the development and testing sets in the
software repository.

A.4 Installation

Assuming you are using Ubuntu 16.04 or greater, you can
install all system dependencies by running the following.

1 $ sudo apt install build-essential curl poppler-utils
< postgresql postgresql-contrib virtualenv libxml2
< -dev libxslt-dev python3-dev

2 $ sudo apt build-dep python-matplotlib

You can then clone the repository by running:

1 $ git clone https://github.com/lukehsiao/lctes-p27.git

Then use a Python virtual environment and the provided
Makefile to install the Python package and dependences
which can be used to generate hardware component knowl-
edge bases. From within the root of the repository, run:

1 $ virtualenv -p python3 .venv
2 $ source .venv/bin/activate
3 $ make dev
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Finally, we recommend you configure a new PostgreSQL
user, demo, with a password of demo, and create a database
for each hardware component.

1 $ psql -c "create user demo with password 'demo'
< superuser createdb;" -U postgres

2 $ psgl -c "create database transistors with owner demo;"
— -U postgres

3 $ psgl -c "create database opamps with owner demo;" -U
< postgres

4 $ psql -c "create database circular_connectors with
< owner demo;" -U postgres

For a more detailed description, see https://github.com/
lukehsiao/Ictes-p27.

A.5 Experiment Workflow

Ensure that all datasets have been downloaded, installation
is complete, and PostgreSQL databases have been created.
Our experiments can be broken into three components: (1)
end-to-end knowledge base construction, (2) scaling exper-
iments, and (3) analysis and plotting. Because the analysis
and plotting scripts rely on the output of knowledge bases,
for convenience, we use intermediate files in CSV format
and provide these intermediate CSV results from a run on
the full dataset.

End-to-end Knowledge Base Construction After complet-
ing the installation steps, three command-line programs
should be available in your virtual environment: transistors,
circular_connectors, and opamps. These programs can be
used to run end-to-end knowledge base construction on their
respective hardware datasets.

Scaling Experiments In the scripts/ directory, we pro-
vide scaling_docs.sh and scaling_rels.sh, which can
be run to generate the runtime logs used to create Figures 4
and 5. These scripts should be customized for your machine
(e.g., whether or not to utilize a GPU).

Analysis and Plotting Next, we provide the analysis
program for transistors and operational amplifiers which can
be used to compare the results of our approach with Digi-Key
(Section 4.2.3 and Table 3). Running the command below will
output two sets of scores for each relation: one for our gener-
ated knowledge base, and one for Digi-Key’s knowledge base,
compared against manually-collected ground truth data.

1 $ analysis --ce-v-max --polarity --gain --current

Finally, we provide plot_opo.py in the scripts/ direc-
tory which can be used to generate Figure 8. To do so, this
script leverages the intermediate CSV files output from the
opamps program. Because we include intermediate files from
a full run, this plot can be generated without running end-to-
end knowledge base construction using our results, or after
running opamps end-to-end to use the results of the most
recent run.
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A.6 Evaluation and Expected Result

End-to-end Knowledge Base Construction Each of the
three programs will produce log files containing the final
quality metrics of that run for each relation extracted (see
example below).

Scoring on Entity-Level Gold Data w/ b=0.245

Corpus Precision 0.742
Corpus Recall 0.807
Corpus F1 0.773

S

These scores on the full datasets of each hardware compo-
nent are the scores entered in Table 2.

Scaling Experiments These same log files also include
runtimes of each computational step in our methodology
(see example below).

Candidate Extraction Time (min): 0.3
Featurization Time (min): 25.2

W N =

We aggregate the runtimes of each phase for each run (i.e.,
while scaling up the number of documents or relations ex-
tracted) and plot the results in Figures 4 and 5.

Analysis and Plotting The analysis program will print
scores to the terminal, which are used to populate Table 3.
In addition, this program will output a set of CSV files that
can be used to manually inspect discrepancies in the knowl-
edge bases (Section 4.2.3). See the README included in the
repository for more details.
The output of plot_opo. py is a PDF figure named opo . pdf,

which is included directly as Figure 8.

A.7 Experiment Customization

While the source code is entirely available, and users can
freely modify any part of the code (e.g., labeling functions),
we expose a few command-line parameters for convenience
in running experiments. These parameters include the num-
ber of documents from the training set to use, the amount of
parallelization to use, whether or not to utilize a GPU during
training, and which relations of each dataset to extract. The
full set of options for each program can be viewed by using
the -h flag. In addition the plot_opo. py script also allows a
user to customize the threshold values used (we default to
0.75, see Section 4.3.1).

A.8 Methodology

Submission, reviewing and badging methodology:
e http://cTuning.org/ae/submission-20190109.html
o http://cTuning.org/ae/reviewing-20190109.html
e https://www.acm.org/publications/policies/artifact-review-badging
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https://github.com/lukehsiao/lctes-p27
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
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