A Case for Evaluating Sensor Network Protocols
Concurrently

Omprakash Gnawali
Stanford University
gnawali@cs.stanford.edu

ABSTRACT

Researchers typically evaluate and compare protocols on the
testbeds by running them one at a time. This methodology
ignores the variation in link qualities and wireless environ-
ment across these experiments. These variations can intro-
duce significant noise in the results. Evaluating two proto-
cols concurrently, however, suffers from inter-protocol inter-
actions. These interactions can perturb performance even
under very light load, especially timing and timing sensitive
protocols. We argue that the benefits of running protocols
concurrently greatly outweigh the disadvantages. Protocols
rarely run in isolation in real networks, and so considering
such interactions is valuable. Although the wireless envi-
ronment is still uncontrolled, concurrent evaluations make
comparisons fair and more statistically sound. Through ex-
periments on two testbeds, we make the case for evaluating
and comparing low data-rate sensor network protocols by
running them concurrently.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General

General Terms

Experimentation, Performance, Measurement

Keywords
Testbed, Collection, Dissemination, CTP, Sensor Network

1. INTRODUCTION

Wireless testbeds provide an opportunity to test network
protocols under realistic wireless environment. Unlike simu-
lations, testbed evaluations do not make simplifying assump-
tions about the wireless channel. Hence, we can expect the
performance of a protocol and its response to dynamics and
failures in the real-world deployment to reflect, to some ex-
tent, the observations in the testbed experiments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WINTECH’10, September 20, 2010, Chicago, Illinois, USA.

Copyright 2010 ACM 978-1-4503-0140-4/10/09 ...$10.00.

Leonidas Guibas Philip Levis
Stanford University

guibas@cs.stanford.edu

Stanford University
pal@cs.stanford.edu

Due to the advantages over simulations, wireless testbed
evaluations are increasingly perceived as necessary for a seri-
ous evaluation of a practical protocol. Many wireless testbeds
are setup to support specific wireless research projects [7]
and some are even public access [24].

Unlike simulation, however, testbed results are rarely re-
peatable or reproducible. As real-world phenomena such as
human activity, humidity, and external interference all affect
the wireless channel, two identical experiments at different
times can observe significantly different results. Even back-
to-back experiments are not guaranteed to have run on the
same set of conditions.

Typically, experiments compare protocols by running each
one individually on a testbed. The hope is that performing
a large number of experiments and averaging the results will
factor out the impact of dynamics on protocol performance.
Still, there are several shortcomings to this approach. It re-
quires a large number of experiments while we already face
limited availability of time on the testbeds. Most impor-
tantly, we are not able to perform a systematic comparison
of protocols under the same set of dynamics.

The basic challenge is that wireless protocols are often
evaluated in how well they use channel capacity (e.g., through-
put). Sensor networks and low-power wireless networks,
however, usually operate well below channel capacity. The
lower workloads in such networks mean that protocols can
often run concurrently without significantly perturbing the
wireless channel. Despite this fundamental difference, low-
power wireless protocol research still typically follows the
well-established methodologies used for high performance
networks.

We propose a different approach: experiments should eval-
uate and compare multiple protocols by running them con-
currently on the same testbed. This approach has two ad-
vantages. First, experiments will complete in shorter time
and allow us to perform more experiments. Unlike simu-
lators that can be instantiated multiple times concurrently,
time-sharing is the only way to increase the number of ex-
periments on the testbeds. Second, the protocols are sub-
jected to the same dynamics during the experiment. This
property ensures that the protocols and parameters are com-
pared fairly.

Despite these advantages, this methodology is rarely used
in wireless research. This lack of adoption is partly due to
our lack of understanding of the consequences of running
multiple protocols at the same time. For example, small
cross-interaction between the protocols could dramatically
change the protocol performance on wireless networks. To

the best of our knowledge, there have been no comparative
study of these two methodologies. How different are the
results between isolated and concurrent runs? What are the
pitfalls?

We study the two methodologies, serial experiments and
concurrent experiments, in wireless protocol evaluation. We
focus on protocols in low data-rate sensor networks. We
make these contributions:

e We show that, for certain protocols, running them con-
currently on testbeds yields similar results as if they
were run serially.

e We present the cases where the results from serial and
concurrent experiments are different. We discuss pos-
sible reasons for this difference.

e We show that simultaneous execution of protocols pro-
vides a more systematic comparison of the protocols
than with sequential executions, especially during link
failures and adverse dynamics.

e We show that the concurrent methodology is also ap-
plicable to comparing the impact of different parame-
ter values of a protocol on its performance.

2. EXPERIMENT METHODOLOGIES

In this section, we describe the two methodologies used
in network protocol (L3) experiments on wireless network
testbeds.

2.1 Serial Experiments

Serial experiments run protocols one at a time on the
testbeds. The researchers perform a large number of ex-
periments to factor out the effects of network dynamics on
protocol performance across the experiments. This is the
most common experimental methodology used by the re-
searchers.

In a recent study that compared a network protocol called
CTP [11] against a proposed Bursty Routing Extension [5]
to CTP, the authors performed a series of 30-minute ex-
periments, running one protocol at a time on the Mote-
lab testbed [24]. Another study comparing broadcast pro-
tocols ran two protocols one after another on a wireless
testbed [21]. We present these examples, not to single out
the methodologies used in these papers, but to illustrate the
norm in wireless testbed experiments.

The main advantage of this approach is that the proto-
col has precise control over the bandwidth used and packet
timing due to exclusive use of the radio. We can guarantee
that cross-interaction with other protocols did not change
the protocol performance. Two main drawbacks of this ap-
proach are requiring exclusive access to the testbed for long
period of time, and not being able to ensure that the proto-
col comparisons are performed on the same set of network
dynamics and channel quality. When the wireless environ-
ment changes, so does the experiment environment.

2.2 Concurrent Experiments

Concurrent experiments run multiple protocols simulta-
neously on each node of the wireless testbeds. All the pro-
tocols in a concurrent experiment are subjected to the same
wireless environment, with or without dynamics. If the link
qualities degrade, all the protocols must work with the same

degraded links for the same duration of time. This approach
is one of the best ways to compare the performance of pro-
tocols under network dynamics.

Although it is infeasible to run hundreds of protocols at
the same time, concurrent experiments are useful in wire-
less research. Typically, we compare a proposed protocol
or solution with 1-5 other protocols or settings. This level
of concurrency is achievable even on resource-constrained
wireless sensor networks. We run up to three protocols con-
currently in our experiments and it is common for a sensor
network deployment to run a handful of protocols (collec-
tion, dissemination, time synchronization, etc.).

Although the required level of concurrency is achievable,
concurrent experiments are not widely used in wireless re-
search. This lack of adoption is partly due to the lack of
systematic study of the effectiveness and pitfalls of this ap-
proach. This is also due to the inapplicability of this ap-
proach for certain types of experiments:

e Experiments that involve high data rates, with ag-
gregate rate near or above channel capacity. If the
protocols compete with each other for bandwidth, the
experiments capture not only the performance of the
protocols on wireless network but also its interaction
with other protocols.

e Synchronized bursts. If the protocol combinations gen-
erate synchronized bursts of control or data packets,
the performance will likely degrade despite the aggre-
gate load is well below the channel capacity.

e Timing-sensitive experiments. The performance of some
protocols depend on timing of messages at a fine scale.
For example, protocol timeouts that are triggered by a
few extra milliseconds of delay due to pending packet
from a concurrently running protocol can alter proto-
col performance.

e Experiments that change certain link and physical-
layer attributes. The notion of wireless neighborhood
and link qualities can be fundamentally altered when
one of the protocols in a concurrent experiment changes
link or physical layer parameters. Examples include
changes to the sleep interval of a link layer proto-
col [18], topology control by changing the transmit
power [13] or receiver gain, and changing the wireless
channel by a frequency-hopping protocol [23]. Such
changes can negatively impact the performance of con-
currently running protocols.

We focus on the evaluation of low data rate network pro-
tocols on top of CSMA link layer. In concurrent experi-
ments with such network layer protocols, we assume a coarse
grained multiplexing in the channel: the space between the
packets from the different protocols is typically much larger
than the channel coherence time.

3. EVALUATION

In this section, we describe our study of the serial and
concurrent approaches to wireless network experiments. We
first explain the experimental setup and then describe the
results.

3.1 Testbeds, Protocols, and Metrics

We perform our experiments on two wireless testbeds. Tu-
tornet [4] has 54 TelosB [19] nodes on the 3rd floor of the
RTH building at USC. TelosB nodes have a 4 MHz MSP430
processor, 10 KB of RAM, come with CC2420 802.15.4-
compatible radio, and run TinyOS 2.x [16]. Thus, they are
ideal for low-power wireless experiments. Motelab [24] has
100 operational TelosB nodes across the three floors of an
Engineering building at Harvard. Motelab testbed has many
links that are intermittent and often presents a challenging
test for network protocols. We collect the statistics from
the experiments using the wired backchannel available on
these testbeds. We ran the experiments on 802.15.4 channel
26, except for one experiment in Section 3.6. Channel 26
does not overlap with the frequencies used by WiFi access
points in the building. We ran each experiment five times
and present the averages.

For our experiments, we pick two classes of best-effort
network protocols common in low power wireless sensor net-
works — collection and dissemination.

Collection protocols compute the shortest paths from all
the nodes in the network to a single or a small number of
destinations, also called roots, in the network. For example,
a network of wireless sensors can use a collection protocol
to report their readings to a central server. CTP [11] selects
paths with the minimum ETX [9] metric. MultihopLQI [2]
uses the LQI metric, which is a link quality indicator pro-
vided by the CC2420 radio [15], to find the best routes to
the root. The main metrics used to evaluate the collection
protocols are:

e Delivery ratio is the ratio of packets received at the
root to the packets sent by the nodes in the network.
High delivery ratio, close to 100%, is desirable.

e Delivery cost is the number of packet transmissions re-
quired per successfully delivered packet. Low delivery
cost is desirable.

e Path length is the average number of hops travelled by
the packets to the root.

e Churn is the number of times a node changes its next
hop.

Dissemination protocols, similar to multicast protocols,
are used to send the same information to all the nodes. For
example, a central server can use a dissemination protocol
to send a command to a network of wireless sensors to start
sampling. Drip [1] is a basic dissemination protocol. Com-
pared to naive flooding, Drip achieves efficiency by avoiding
redundant transmissions if the same information has already
been received by the nodes in the neighborhood through dif-
ferent relay nodes. Compared to Drip, DIP [17] and DHV [§]
can scale to a large number of data item updates, however
perform worse than Drip on small number of data items or
updates. The main metrics used to evaluate dissemination
protocols are:

e Dissemination reliability is the ratio of updates re-
ceived to the updates sent. Dissemination reliability
close to 100% is desirable.

e Dissemination cost is the number of transmissions for
each packet dissemination per node. This cost can be

less than 1 because one broadcast transmission can
deliver packets to multiple neighbors.

3.2 Serial Experiments

We ran the two collection protocols and the three dissemi-
nation protocols one at a time. These experiments establish
a baseline performance for each protocol. Later, we com-
pare these results to the results obtained from concurrent
experiments.

In each collection experiment on Motelab and Tutornet,
all the nodes send one packet every 8s to the root. Packet
send times include jitter so that packets are not synchronized
across the network. In each dissemination experiment, one
node sends a new update to a key to the network every 30s.
Each collection and dissemination experiment runs for one
hour.

CTP and MultihopLQI achieved 99.9%+ packet delivery
on Tutornet. On Motelab, CTP achieved 96.3% packet de-
livery while MultihopLQI achieved 93.6% packet delivery.
Drip, DIP, and DHV achieved 99.9%, 99.3%, and 96.7%
dissemination delivery on Tutornet. They achieved 99.8%,
98.6%, and 86.5% dissemination delivery on Motelab. In the
next section, we compare these baseline performances with
the results from the concurrent experiments.

3.3 Concurrent Collection Experiments

For concurrent collection experiments, we ran CTP and
MultihopLQI on the nodes at the same time. Each node
generated two data packets every 8s, sent one using CTP,
and the other using MultihopLQI. A total of two packets
every 8s from each node is well below the channel capacity
on both the testbeds. We added jitter to the packet timing
to prevent synchronized bursts.

Table 1 presents the main results for the collection proto-
cols. We found that delivery ratio achieved by MultihopLQI
and CTP when they are run concurrently remain within
1.08% of what each achieved individually, both on Tutor-
net and Motelab. The Cost, Path Length, and Cost/Path
Length (PL) metrics are different by up to 11% between se-
rial and concurrent experiments. The Churn/node-hr metric
shows the biggest variation (up to 180%) between serial and
concurrent experiment.

These experiments show that different performance met-
rics change to different extent between serial and concurrent
experiments. We make two observations that offer a possible
explanation for this difference. First, protocols are designed
to optimize some aspect of the performance. Hence, even
with channel perturbation or cross-interaction in a concur-
rent experiment, the protocols still achieve what it achieved
in a serial experiment. For example, CTP is designed to
achieve high delivery ratio. It achieves high delivery ra-
tio regardless of the other protocols running concurrently.
Hence, CTP’s performance measured through the delivery
ratio metric changes little between serial and concurrent ex-
periments.

The second observation is, the large variation in perfor-
mance across serial and concurrent experiments can be pre-
dicted by the large variation within serial experiments. Fig-
ure 1 shows that the variation in Delivery, Cost, and Path
Length metrics are small within serial experiments. Churn
shows larger variation within serial experiments. Hence, the
large discrepancy in Churn between serial and concurrent
experiments is due to the dynamic aspect of the protocol

Protocol Experiment Testbed Delivery Cost Path Length PathCI_o,Z&lgth n?)g‘éflrllr
LQI LQI alone Tutornet 99.91% 2.12 1.82 1.16 5.42
LQI CTP+LQI Tutornet 99.98% 2.23 1.80 1.24 5.48
CTP CTP alone Tutornet 100.00% 2.22 2.14 1.04 0.28
CTP CTP+LQI Tutornet 99.99% 2.03 1.93 1.05 0.10
LQI LQI alone Motelab 93.60% 4.80 3.21 1.49 9.76
LQI CTP+LQI Motelab 92.60% 5.30 3.40 1.56 10.52
CTP CTP alone Motelab 96.35% 7.03 3.47 2.03 5.85
CTP CTP+LQI Motelab 96.38% 7.29 3.81 1.92 4.64

Table 1: Performance of CTP and MultihopLQI (LQI) in serial and concurrent experiments.

Lal cTP
= =
n O =
I =
- == =1 ii == == = 2
T |
=

ocooorooooor
ONPOOOOONPOO®XO

Delivery Cost Path Length Churn

Delivery Cost Path Length Churn

Figure 1: Result of Serial and Concurrent collection experiments on Tutornet and Motelab. Cost, Path
Length, and Churn are normalized to the maximum value observed for that metric. Each bar shows the
observations from five runs. Compared to other metrics, Churn shows the highest variation across the

experiments.

(opportunistic parent selection by CTP, for example) mea-
sured by this metric rather than due to serial or parallel
experimentation.

3.4 Concurrent Dissemination Experiments

For concurrent dissemination experiments, we ran two sets
of experiments, first with Drip+DIP (Conc-2) and second
with Drip+DIP+DHV (Conc-3) combinations, both on Tu-
tornet and Motelab. Each node generated a new update
every 30s and sent it to the network separately using each
dissemination protocol concurrently. The load generated by
these experiments is well below the channel capacity on the
testbeds.

Table 2 summarizes the results from our dissemination ex-
periments. We found that the performance of Drip, when
we run it by itself, or with DIP, or with both DIP and DHV,
is similar. The difference in dissemination reliability across
the combinations and testbeds is within 0.23% and Update
Cost within 1.04%. The dissemination reliability achieved
by DIP and DHV is different by up to 13.45% between serial
and concurrent experiments across the testbeds. The Cost
per Update metric for DIP and DHV, however, changes sig-
nificantly over the experiments. For example, DHV’s Cost
per Update increases by 39.97% when it is run concurrently
with Drip and DIP compared to its Cost per Update when
it is run alone on Tutornet.

Similar to the observation we made about collection proto-
cols, the metrics that showed the most variance within serial
experiments also showed the biggest change between serial
and concurrent experiments. Figure 2 shows that Drip’s
dissemination reliability does not change across serial ex-

periments on Tutornet. As expected, we did not observe
any change in its reliability between serial and concurrent
experiments. On Motelab, DHV’s reliability showed the
largest variation compared to Drip and DIP. The difference
in DHV’s reliability between serial and concurrent experi-
ment was also high (39.97%). These results suggest that
they are likely experimental variations (because the protocol
does not optimize these metrics) rather than consequences
of concurrent experiments.

3.5 Pathological Experiments

In Section 2.2, we discussed a few scenarios in which pro-
tocol experiments can cross-interact and are not appropriate
for concurrent experiments. We now explore two such sce-
narios.

On Tutornet, we ran CTP and MultihopL.QI concurrently.
The application using CTP tried to send 2 packets every
second. The application using MultihopL.QI tried to send
1 packet every 8 seconds. Due to the high load from the
CTP packets, MultihopLQI rarely finds a free channel to
transmit its packets. It drops many packets as the queues fill
up. MultihopLQI achieved a delivery ratio of 72% at a cost
of 8.26 packet transmissions for each packet delivery, about
4x the cost in serial experiments. This poor performance is
not due to the design flaws, but rather a result of interaction
with another protocol experiment. Thus, when planning and
performing concurrent experiments, we need to consider the
parameters and configurations of all the protocols.

In another experiment, we ran CTP and MultihopLQI
concurrently on Motelab. We removed the jitter in the
packet send time so that the two packets, one with CTP

ocooorooooor
ONPOOOONPOO®O

Drip DIP DHV
L w0 v _ M = c
& & & o ¢ S
w O O @ 5 5
wn o =
= = = | =
2
(=]
=
Reliability = Cost/Node Reliability =~ Cost/Node Reliability = Cost/Node

Figure 2: Result of Serial and Concurrent dissemination experiments, Conc-2 (Drip+DIP) and Conc-3
(Drip+DIP+DHYV), on Tutornet and Motelab. Cost/node is normalized to the maximum value observed.
Each bar shows the observations from five runs. Cost/node shows higher variation than Reliability in serial

and concurrent experiments.

. FERTETT Cost

Protocol Experiment Reliability Node
Tutornet Experiments
Drip Drip alone 99.99% 0.21
Drip Drip+DIP 100.00% 0.21
Drip Drip+DIP+DHV 100.00% 0.22
DIP DIP alone 99.31% 0.36
DIP Drip+DIP 93.42% 0.39
DIP Drip+DIP+DHV 93.00% 0.37
DHV DHYV alone 96.68% 0.34
DHV Drip+DIP+DHV 88.90% 0.48
Motelab Experiments

Drip Drip alone 99.82% 0.86
Drip Drip+DIP 99.99% 0.85
Drip Drip+DIP+DHV 100.00% 0.85
DIP DIP alone 98.56% 1.41
DIP Drip+DIP 89.27% 1.63
DIP Drip+DIP+DHV 87.18% 1.52
DHV DHYV alone 86.52% 1.89
DHV Drip+DIP+DHV 79.18% 2.38

Table 2: Performance of Drip, DIP, and DHV in
serial and concurrent experiments.

and one with MultihopLQI, were sent as close to each other
as possible, and from all the nodes in the testbed. Although
the aggregate load is below the channel capacity, this tim-
ing pattern creates a burst of packets in the network and
cause packet drops. Table 3 summarizes the results. Both
the protocols achieved lower delivery ratio and higher deliv-
ery cost than in serial experiments. When protocols tightly
control the timing of their packets, there is a possibility of
such packet synchronization across the protocols in a con-
current experiment. Such packet synchronization results in
bursts of packet and degraded performance, even though
those protocols would have achieved better performance in
serial experiments.

3.6 Network Dynamics

To use concurrent experiments to evaluate protocols under
the same dynamics, we perform two experiments.

CTP MultihopLQI

Delivery 95.3% 85.0%

Cost 8.43 6.45

Path Length 4.05 3.39

Cost

Path Length 2.08 1.90

Churn 6.50 2.63
node-hr

Table 3: Performance of CTP and MultihopLQI
Motelab with synchronized packets.

70 A]
)

B 60 - Interference, /_/__ N
c Al A I
X

l— -
&) -
g CTP —— [
e MultihopLQl --------- -

Time (minutes)

Figure 3: Concurrent CTP and MultihopLQI under
controlled interference. Both protocols incur larger
number of retransmissions during the 6-minute pe-
riod with interference.

First, we perform an experiment with controlled dynam-
ics. We ran CTP and MultihopLQI concurrently on Tutor-
net, with each node sending 1 packet every 8s packets using
each protocol. During the 6-12 minute interval, we intro-
duced unwanted interference by having four nodes transmit
back-to-back broadcast packets. CTP and MultihopLQI still
achieved near 100% delivery ratio during this period however
at a higher cost. Figure 3 shows the number of packet re-
transmissions for CTP and MultihopLQI. We can see much
larger number of retransmissions during this period. When
the interfering nodes are turned off, the number of retrans-
missions drop for both the protocols to the normal level.
During this experiment both the protocols were subjected
to the same dynamics and we were able to observe the per-
formance and reaction of the two protocols.

In our next experiment, we ran CTP and MultihopLQI
concurrently on Tutornet for 12 hours on channel 16. Chan-

°
5
o
>
[0
2
8 096 - CTP —— i
MultihopLQl ---------
0.95 : : . . |
o 2 4 6 8 10 12
1400 L 1 Il | |

[0 I —
B 1200 A Multlho%L_%l 1
< - B
S 1000 - - I
S 800 - L i
§ 600 - I
2 400 1 e I
§ 2004 _ —
[0 de : . . |

o 2 4 6 8 10 12
g 1% MulthoplQl — .- -
g CTP ——
£ 120 - P i
€ 100 - i
2 80 - e i
o 60] #'—"’ -
T 40 - e i
° B e T

o 2 4 6 8 10 12

Time(hrs)

Figure 4: Concurrent CTP and MultihopLQI un-
der dynamics. During disruption (just before 9th
hr), CTP’s route repair mechanism reacts aggres-
sively and recovers quickly, hence jump in beacons
and churn. MultihopLQI repairs the topology at the
normal discovery rate.

nel 16 overlaps with WiFi channel used in the building and
can experience disruptions when WiFi traffic volume is high.
Figure 4 shows the delivery ratio achieved by these two pro-
tocols, averaged every 15 minutes. Out of four regions with
delivery ratio less than 98% for MultihopL.QI, CTP was af-
fected during the third region, although to a lesser extent.
Furthermore, CTP recovered in half the time it took Mul-
tihopLQI to recover. The same figure also shows the churn
and control packets. CTP’s churn and control packets in-
crease during this disruption as it tried sending packets on
alternative nexthop nodes to recover from the disruption
as soon as possible. MultihopLQI’s control overhead and
churn does not change much because it uses periodic beacon-
ing and route discovery. This result contrasts the recovery
mechanisms used in CTP and MultihopLQI when they are
subjected to the identical network dynamics. Thus, with
concurrent experiments, we have the ability to study how
two protocols respond to the same dynamics.

3.7 Protocol Parameters

Concurrent experiments can also be used to study the im-
pact of different parameter values on protocol performance.
As a case study, we changed the path switching threshold in
CTP from ETX=1.5 to ETX=2.5. With the new threshold,
CTP chooses a new path only if its ETX is smaller than

Route switch 1.5 ETX 2.5 ETX

threshold (default)

Delivery 99.9% 99.9%

Cost 2.13 2.69

Path Length 1.81 2.30
Cost

Path Length 1.18 117

Table 4: Key results to study the impact of larger
route switch threshold on CTP’s performance.

the ETX of the current path by at least 2.5. This change
is expected to make CTP more stable. We concurrently ran
these two versions of CTP on Tutornet, each version of CTP
delivering 1 packet every 8s from each node in the network.

Table 4 summarizes the key results from this experiment.
Increasing the threshold from 1.5 ETX to 2.5 ETX increased
the packet delivery cost from 2.13 to 2.69 transmissions,
an increase of 26%. The remaining two metrics explain
why. The paths are longer with the larger threshold. CTP
will switch to the new path only if it is significantly (2.5
ETX) better and thereby not using marginally better (and
shorter) paths to achieve lower delivery cost. Interestingly,
the Cost/PL metric is similar with both the thresholds sug-
gesting CTP continues to use high quality links that require
few retransmissions.

This approach of studying the protocol parameters gives
us the confidence that the parameter values for a protocol
are being evaluated on the same set of dynamics and hence
indicative of the true impact of the parameter and not the
dynamics in the network.

4. RELATED WORK

Wireless networks routinely run many protocols concur-
rently. For example, a Tenet [12] system runs collection, dis-
semination, and time synchronization protocols at the same
time. CSMA is a classic mechanism used by MAC protocols
to arbitrate concurrent communication. Work by Vaidya et
al. [22] and protocol isolation [14] propose mechanisms to
ensure fairness across the protocols in a wireless network.
Such mechanisms will make concurrent execution of proto-
cols more common. Our work is more concerned with under-
standing the implications of running protocols concurrently
in a wireless network.

Within a node, the layered architecture of the network
stack allows multiple higher layer components to concur-
rently use the lower layer services. Multiple network proto-
cols may run on top of the link layer and multiple transport
protocols may run on top of a network layer. As a specific
example, TinyOS 2.x [16] messaging API guarantees that
each packet sender has one slot in the link layer send queue,
regardless of the load presented by other packet senders.
We advocate parallelizing testbed experiments by running
multiple protocols concurrently leveraging the concurrency
already supported in such platforms.

In systems and networking research, Planetlab [10] is by
far the best known example of a shared testbed where many
experiments can run simultaneously. GENI [3] is another
networking experiment infrastructure that supports concur-
rent experiments through slicing. OpenRoads slices can al-

locate network resources to different concurrent wireless ex-
periments [25]. Techniques such as spectrum slicing [6] and
wireless virtualization [20] enable other approaches to con-
current experiments. In this paper, we discuss the classes
of wireless experiments that can be parallelized on shared
testbeds and also explore the differences between serial and
parallel experiments in low-utilization sensor network pro-
tocols.

5. CONCLUSIONS

Protocol evaluations on wireless testbeds are typically done
using a series of experiments, one protocol or configuration
at a time. This approach can be significantly more time con-
suming than simulations. We showed that concurrent exe-
cution of network protocols is one possible way to increase
the number of experiments on these testbeds. Concurrent
execution also enables a fair and systematic comparison of
protocols under dynamic environment found on many wire-
less testbeds. However, there are many pitfalls to this ap-
proach. We articulated and studied some of these issues.
We hope this will provide hints for experiment design to the
researchers as they plan concurrent experiments on wireless
testbeds.

Acknowledgments

This work was supported by ARO AHPCRC grant W911NF-
07-2-0027, generous gifts from DoCoMo Capital, the Na-
tional Science Foundation under grants #0626151, #0831163,
and #0846014, the King Abdullah University of Science and
Technology (KAUST), Microsoft Research, and a Stanford
Terman Fellowship.

6. REFERENCES

[1] The Drip protocol. http:
//www.tinyos.net/tinyos-2.x/tos/1lib/net/drip,
20009.

[2] The MultiHopLQI protocol. http:
//www.tinyos.net/tinyos-2.x/tos/lib/net/1qi,
20009.

[3] The Global Environment for Network Innovations
(GENI). http://www.geni.net, 2010.

[4] The USC Tutornet Testbed.
http://testbed.usc.edu, 2010.

[5] Muhammad Hamad Alizai, Olaf Landsiedel, J6
Agila Bitsch Link, Stefan Gétz, and Klaus Wehrle.
Bursty traffic over bursty links. In SenSys ’09:
Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, pages 71-84, New York,
NY, USA, 2009. ACM.

[6] Angelos-Christos Anadiotis, Apostolos Apostolaras,
Dimitris Syrivelis, Thanasis Korakis, Leandros
Tassiulas, Luis Rodriguez, and Maximilian Ott. A new
slicing scheme for efficient use of wireless testbeds. In
WINTECH °09: Proceedings of the 4th ACM
international workshop on Experimental evaluation
and characterization, pages 83-84, New York, NY,
USA, 2009. ACM.

[7] Benjamin A. Chambers. The grid roofnet: a rooftop
ad hoc wireless network. Master’s thesis,
Massachusetts Institute of Technology, May 2002.

[8] Thanh Dang, Nirupama Bulusu, Wu chi Feng, and
Seungweon Park. DHV: A Code Consistent

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

Maintenance Protocol for Wireless Sensor Networks.
In EWSN ’09: Proceedings of the 6th 6th Furopean
Conference on Wireless Sensor Networks, Cork,
Ireland, 2009.

Douglas S. J. De Couto, Daniel Aguayo, John Bicket,
and Robert Morris. A high-throughput path metric for
multi-hop wireless routing. In MobiCom ’03:
Proceedings of the 9th annual international conference
on Mobile computing and networking, pages 134—-146,
New York, NY, USA, 2003. ACM.

Marc E. Fiuczynski. Planetlab: overview, history, and
future directions. SIGOPS Oper. Syst. Rev.,
40(1):6-10, 2006.

Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson,
David Moss, and Philip Levis. Collection Tree
Protocol. In SenSys ’09: Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems,
pages 1-14, New York, NY, USA, 2009. ACM.
Omprakash Gnawali, Ki-Young Jang, Jeongyeup Paek,
Marcos Vieira, Ramesh Govindan, Ben Greenstein,
August Joki, Deborah Estrin, and Eddie Kohler. The
tenet architecture for tiered sensor networks. In
SenSys '06: Proceedings of the 4th international
conference on Embedded networked sensor systems,
pages 153-166, New York, NY, USA, 2006. ACM.
Gregory Hackmann, Octav Chipara, and Chenyang
Lu. Robust topology control for indoor wireless sensor
networks. In SenSys 08: Proceedings of the 6th ACM
conference on Embedded network sensor systems,
pages 57-70, New York, NY, USA, 2008. ACM.

Jung Il Choi, Maria A. Kazandjieva, Mayank Jain, and
Philip Levis. The case for a network protocol isolation
layer. In SenSys ’09: Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems,
pages 267280, New York, NY, USA, 2009. ACM.
ChipCon Inc. Cc2420 data sheet. http://www.
chipcon.com/files/CC2420_Data_Sheet_1_0.pdf,
2003.

P. Levis, D. Gay, V. Handziski, J.-H.Hauer,
B.Greenstein, M.Turon, J.Hui, K.Klues, C.Sharp,
R.Szewczyk, J.Polastre, P.Buonadonna, L..Nachman,
G.Tolle, D.Culler, and A.Wolisz. T2: A Second
Generation OS For Embedded Sensor Networks.
Technical report, Telecommunication Networks Group,
Technische Universitat Berlin, 2005.

Kaisen Lin and Philip Levis. Data Discovery and
Dissemination with DIP. In IPSN ’08: Proceedings of
the 7th international conference on Information
processing in sensor networks, pages 433-444,
Washington, DC, USA, 2008. IEEE Computer Society.
Joseph Polastre, Jason Hill, and David Culler.
Versatile low power media access for wireless sensor
networks. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked
sensor systems, pages 95-107, New York, NY, USA,
2004. ACM.

Joseph Polastre, Robert Szewczyk, and David Culler.
Telos: enabling ultra-low power wireless research. In
IPSN ’05: Proceedings of the 4th international
symposium on Information processing in sensor
networks, page 48, Piscataway, NJ, USA, 2005. IEEE
Press.

[20]

[21]

[22]

Gregory Smith, Anmol Chaturvedi, Arunesh Mishra,
and Suman Banerjee. Wireless virtualization on
commodity 802.11 hardware. In WinTECH ’07:
Proceedings of the second ACM international workshop
on Wireless network testbeds, experimental evaluation
and characterization, pages 75-82, New York, NY,
USA, 2007. ACM.

Fred Stann, John Heidemann, Rajesh Shroff, and
Muhammad Zaki Murtaza. Rbp: robust broadcast
propagation in wireless networks. In SenSys ’06:
Proceedings of the 4th international conference on
Embedded networked sensor systems, pages 8598,
New York, NY, USA, 2006. ACM.

Nitin H. Vaidya, Paramvir Bahl, and Seema Gupta.
Distributed fair scheduling in a wireless lan. In
MobiCom ’00: Proceedings of the 6th annual
international conference on Mobile computing and
networking, pages 167-178, New York, NY, USA,
2000. ACM.

23]

24]

(25]

Thomas Watteyne, Ankur Mehta, and Kris Pister.
Reliability through frequency diversity: why channel
hopping makes sense. In PE-WASUN °09: Proceedings
of the 6th ACM symposium on Performance evaluation
of wireless ad hoc, sensor, and ubiquitous networks,
pages 116-123, New York, NY, USA, 2009. ACM.
Geoffrey Werner-Allen, Patrick Swieskowski, and Matt
Welsh. Motelab: a wireless sensor network testbed. In
IPSN ’05: Proceedings of the 4th international
symposium on Information processing in sensor
networks, page 68, Piscataway, NJ, USA, 2005. IEEE
Press.

Kok-Kiong Yap, Masayoshi Kobayashi, David
Underhill, Srinivasan Seetharaman, Peyman
Kazemian, and Nick McKeown. The stanford
openroads deployment. In WINTECH ’09:
Proceedings of the 4th ACM international workshop on
Ezperimental evaluation and characterization, pages
59-66, New York, NY, USA, 2009. ACM.

