
ALTO: An Efficient Network Orchestrator for
Compound AI Systems

Keshav Santhanam∗

Stanford University
Deepti Raghavan∗
Stanford University

Muhammad Shahir Rahman
Stanford University

Thejas Venkatesh
Stanford University

Neha Kunjal
Stanford University

Pratiksha Thaker
Carnegie Mellon University

Philip Levis
Stanford University

Matei Zaharia
University of California, Berkeley

Abstract
We present ALTO, a network orchestrator for efficiently serv-
ing compound AI systems such as pipelines of language mod-
els. ALTO leverages an optimization opportunity specific to
generative language models, which is streaming intermedi-
ate outputs from the language model to downstream stages.
We highlight two challenges that emerge while serving these
applications at scale: handling how some stages can be state-
ful across partial outputs, and handling how language mod-
els can produce variable amounts of text. To address these
challenges, we motivate the need for an aggregation-aware
routing interface and distributed prompt-aware scheduling.
ALTO’s partial output streaming increases throughput by
up to 3× for a fixed latency target of 4 seconds / request and
reduces tail latency by 1.8× compared to a baseline serving
approach, on a complex chat bot verification pipeline.

CCSConcepts: •Computingmethodologies→Distributed
artificial intelligence.

Keywords: Compound AI systems, Stream processing
ACM Reference Format:
Keshav Santhanam, Deepti Raghavan, Muhammad Shahir Rahman,
Thejas Venkatesh, Neha Kunjal, Pratiksha Thaker, Philip Levis,
and Matei Zaharia. 2024. ALTO: An Efficient Network Orchestrator
for Compound AI Systems. In 4th Workshop on Machine Learn-
ing and Systems (EuroMLSys ’24), April 22, 2024, Athens, Greece.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3642970.
3655844
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroMLSys ’24, April 22, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0541-0/24/04
https://doi.org/10.1145/3642970.3655844

Generative LM stages

Retrieval / reranking stages

Streaming partial outputs

No streaming

(4) BM25 Retrieval

(2) Claim Extraction

(1) Question Answering

(3) Search Query Generation

(5) ColBERT Query Encoding

(6) ColBERT Reranking

Open-ended generation

Stream of claims

Stream of
search queries

Stream of
search queries

(token-by-token)

Candidate
documents

Embedding
tensors

Reranked documents

Knowledge-based question

Claims with evidence

Figure 1. FacTool [8]-inspired pipeline for verifying chatbot
claims. When the user asks a question (stage 1), claims are
extracted from the response (stage 2) and search queries
are generated for each claim (stage 3). The search queries
retrieve relevant documents from a knowledge corpus using
BM25 (stage 4) and reranked by ColBERT (stages 5 and 6).

1 Introduction
Generative language models (LMs) are often chained to-
gether and combined with other components into compound
AI systems [44]. Compound AI system applications include
retrieval-augmented generation (RAG) [11, 12, 17, 27], struc-
tured prompting [3, 38, 41], chatbot verification [7, 8, 10, 33],
multi-hop question answering [14, 42], agents [20, 25, 29, 40],
and SQL query generation [18, 34].
This paper explores how to serve compound AI systems

efficiently at scale. One interesting property of generative
language models (LMs) is that they incrementally produce
partial outputs, emitting a single output token in each itera-
tion. While language models incrementally produce tokens,
stages in an AI pipeline may operate at a variety of granular-
ities of text, ranging from individual tokens to larger quanta
such as sentences or paragraphs (e.g., one stagemay generate
a list of claims that another stage can verify in parallel). Com-
pound AI system pipelines with language models therefore
process partial outputs at multiple levels of quantization.

117

https://doi.org/10.1145/3642970.3655844
https://doi.org/10.1145/3642970.3655844
https://doi.org/10.1145/3642970.3655844
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3642970.3655844&domain=pdf&date_stamp=2024-04-22

Question Answering

Claim Extraction

Query Generation

BM25 Retrieval

ColBERT Query Encoding

ColBERT Reranking

Compound AI Systems Today Partial Output Streaming

Request 1 Request 2 Request 3

Figure 2. Visualizations of serving an example trace for the FacTool-inspired pipeline from Figure 1. The squares at each stage
represent a single unit of output; in these traces two claims are extracted for each global request, and two search queries are
generated for each claim. On the left we wait for all output to be produced before sending intermediate data to downstream
stages, while on the right we stream partial outputs between stages as soon as it is available.

This paper makes the key observation that streaming par-
tial outputs between distributed stages can reduce serving
latency and increase throughput. Streaming reduces latency
by enabling downstream stages to begin processing interme-
diate tokens before an upstream LM has finished generating
its output. Dynamically scheduling streams across functional
units increases throughput because it prevents stages from
falling idle when there is work to do.
Figure 1 shows an example of this benefit for a pipeline

inspired by FacTool [8]1, a compound AI system that fact-
checks a chatbot by retrieving relevant documents as corrob-
orating evidence for factual claims. Here each claim extracted
in stage 2 can stream to stage 3 as soon as it is available in-
stead of waiting for all claims to be emitted. Each search
query generated in stage 3 can similarly stream to stages 4
and 5. Figure 2 shows how this reduces latency by overlap-
ping computation across stages within a single request.
Streaming partial outputs between pipeline stages intro-

duces two challenges: correctness and efficient load balanc-
ing. Correctness challenges emerge because some pipeline
stages are stateful and aggregate partial data across a stream.
In Figure 1, for example, stage 4 is stateful because it needs
to aggregate document relevance scores across each search
query token streamed from stage 3. Stateful stages impose a
hard requirement that all partial outputs corresponding to
a particular in-flight request must follow a consistent path
throughout pipeline stage instances. At the same time, other
stages can have their partial outputs fan out across different
paths for greater parallelism. Specifying partial output rout-
ing requirements is difficult because each stage can have a
dynamic fan-out spanning different quanta of output (e.g.
words, sentences) with complex aggregation logic.

1The differences between our pipeline and FacTool are that we omit the final
claim appraisal stage and we use local BM25 and ColBERT deployments for
document retrieval rather than Google search. We will include the claim
appraisal stage in a future version of the work.

Load balancing is challenging due to the need to decide
how to route parallel requests when the LM generates an un-
known amount of fan-out. In particular, each prompt served
in a pipeline can generate a varying number of output tokens
and be queried at different frequencies depending on this fan-
out. Therefore when serving many prompts concurrently,
these streams must be load balanced across many instances.
In this paper, we propose ALTO (Automatic Language

Token Orchestrator), a serving system for automatically dis-
tributing and parallelizing compound, streamingAI pipelines.
We describe a prototype of ALTO’s streaming architecture
and show that streaming over multiple quanta of partial out-
puts provides performance benefits to pipelines over naïve
architectures that do not support streaming. Our current
ALTO implementation addresses the challenge of correct-
ness with aggregation-aware routing, an interface to express
where partial outputs must be routed for aggregation. We
propose possible extensions to our current design that would
enable more dynamic load-aware task placement while still
meeting hard requirements imposed by aggregation, describ-
ing a design for distributed prompt-aware scheduling to load
balance across a dynamic distribution of prompts without
introducing long queueing delays.
Aggregation-aware routing. ALTO introduces a novel in-

terface to enable fine-grained specification of routing at mul-
tiple levels of output granularity through aggregation-aware
routing. §4 shows how this interface enables developers to
specify both the quantum of partial output (e.g. token, sen-
tence) to be aggregated as well as the aggregation destination.
Using this interface ALTO is able to fully load balance across
logically independent partial outputs while still enforcing
any specified aggregation rules.

Distributed prompt-aware scheduling.The goal of distributed
prompt-aware scheduling is to balance load across a hetero-
geneous set of prompts, each producing varying quanta of
partial outputs at different frequencies. We quantitatively

118

motivate the need for distributed prompt-aware scheduling
and discuss preliminary ideas toward an algorithm design.

We evaluate ALTO on the FacTool-inspired pipeline from
Figure 1. Our results show that ALTO’s streaming optimiza-
tions increase throughput by 3× for a given latency target of
4 seconds / request while also reducing tail latency by 1.8×.

In summary, this paper makes the following contributions:
• An empirical analysis of how streaming partial outputs
can significantly accelerate compound AI systems.

• An analysis of the novel correctness and load balancing
challenges introduced when streaming partial outputs,
which introduces the concepts of aggregation-aware
routing and distributed prompt-aware scheduling.

• The ALTO system which implements a network or-
chestration layer to efficiently forward data across
pipeline stage instances while respecting aggregation
constraints.

2 Streaming can improve performance of
serving pipelines

In this sectionwe demonstrate how streaming partial outputs
between pipeline stages can significantly improve compound
AI system serving performance in terms of both through-
put and latency. In particular, we evaluate streaming perfor-
mance for the FacTool-inspired pipeline presented in Figure 1
using a prototype version of ALTO. We spawn multiple in-
stances of each stage as specified in the following table:

Stage # Instances GPU

Question Answering 2 ✓

Claim Extraction 2 ✓

Search Query Generation 3 ✓

BM25 4 ✗

ColBERT Query Encoder 1 ✓

ColBERT Reranker 4 ✗

We load balance in-flight data across the instances using
round-robin scheduling; we use a simple hashing-based ap-
proach to choose the next instance for forwarding in-flight
data (hash(request_id) % n, where 𝑛 is the number of
downstream stage instances).
We measure end-to-end throughput (achieved load) and

latency (median and P99) as we inject load into the sys-
tem according to a Poisson distribution with varying 𝜆. The
achieved load here is the total number of requests sent within
a time interval (in this case 12 minutes) / the wall-clock time
it took to complete all requests.
We use SQuAD [26] queries for the input data. We use

vLLM [16] version 0.26 for generative LM serving. For re-
trieval we use a retrieve-and-rerank pipeline [24] which uses
a custom BM25 [28] implementation as the first stage re-
triever and then ColBERT [31, 32] as the reranker; the BM25
implementation is specifically designed for streaming as it

FacTool without Streaming Partial Outputs FacTool with Streaming Partial Outputs

0 5 10 15 20 25
Achieved Load (Requests Per Second)

0

2

4

6

8

10

M
ed

ia
n

La
te

nc
y

(s
)

(a) Median Latency vs Achieved Load.

0 5 10 15 20 25
Achieved Load (Requests Per Second)

0
5

10
15
20
25
30

P9
9

La
te

nc
y

(s
)

(b) P99 Latency vs Achieved Load.

Figure 3. Serving performance for the FacTool-inspired
pipeline from Figure 1. We compare performance between
a baseline serving approach which waits for all LM gener-
ations to complete and an approach which instead streams
partial outputs between pipeline stages. We only include
points where the achieved load was ≥ 80% of the offered
load. Note that both the baseline approach and the optimized
approach are implemented using ALTO.

exposes an interface to compute document relevance scores
token-by-token and then sum across all query tokens. We
evaluate on a single NVIDIA HGX node with 8 80 GB A100-
SXM GPUs and 256 AMD EPYC 7763 CPUs.
Figure 3 presents the results. We observe that streaming

partial outputs enables up to 3× higher load for a given
latency target of 4 seconds per request. Furthermore, stream-
ing enables 1.8× lower P99 latency at low load. These re-
sults show that a streaming architecture is not only natural
for compound AI systems but also can provide dramatic
performance improvements. However, realizing these im-
provements for general distributed systems is not as straight-
forward as running an AI system on an existing streaming
architecture. In the next section, we detail challenges specific
to the setting of streaming in compound AI systems.

3 Challenges
Running multiple instances of each pipeline stage results
in new challenges when streaming partial outputs between
each stage. In particular, this requires special considerations
for correctness and load balancing that are unique to LM
applications.

3.1 Correctness
Compound AI systems can include stateful pipeline stages
which aggregate across partial outputs within a stream. As

119

Request 1 Request 2

Stage 1

Instance 1

Stage 1

Instance 2

Stage 2

Instance 1

Stage 2

Instance 2

5 4 3 2 1

1 2 3

1 2 3 4

5 1 2 3

(a) Load balancing without an aggregation constraint.
Stage 1

Instance 1

Stage 1

Instance 2

Stage 2

Instance 1

Stage 2

Instance 2

5 4 3 2 1

1 2 3

2 3 4 5

1 2 3

1

(b) Load balancing with an aggregation constraint.

Figure 4. Aggregation complicates load balancing. Stage 1
instances stream partial outputs to stage 2 instances; each
numbered box represents a single partial output. Output
streams that do not require aggregation (Figure 4a) can be
easily load balanced across instances. An aggregation-aware
routing policy (Figure 4b) that requires all outputs from each
request to visit the same instance, however, forces different
instances to have different loads; instance 2 falls idle after
processing its three outputs while instance 1 continues pro-
cessing the 4th and 5th outputs.

we discuss in §1, stage 4 in Figure 1 is stateful because it
needs to sum across per-token relevance scores when stream-
ing search query tokens from stage 3. In addition to sums,
stateful stages may include aggregation operators such as
top-k, counters, and filters.

Aggregation-aware routing is necessary to ensure correct
aggregation for stateful stages while load balancing partial
outputs across multiple stage instances. With aggregation-
aware routing, every partial output in a stream of partial
outputs is routed through the same destination stage in-
stance. The experiments discussed in §2 use a simple hashing
mechanism to implement aggregation-aware routing. This
approach is suboptimal, however, because it unnecessarily
forces every stage to respect a global aggregation-aware
routing policy even when the stage performs no aggregation.
As Figure 4 shows, this can compromise load balancing effi-
ciency by limiting routing flexibility. The optimal approach
would instead locally apply aggregation-aware routing ex-
clusively to stateful stages.
Restricting aggregation-aware routing to stateful stages

requires designing a new interface for specifying the stateful
stages and their respective aggregation rules to the underly-
ing routing engine. This is challenging because the interface
must generalize across the space of possible output quanta
while capturing complex aggregation logic. Consider the
aggregation-aware routing rule for partial outputs streamed
from stage 3 to stage 4 in Figure 1. A complete specification
of this rule must indicate that the partial output quantum to
aggregate is a token, the tokens must be aggregated at stage

4, and the tokens should be aggregated across a given search
query.

Streaming APIs such as those defined in Kafka [36], Spark
Streaming [2, 43], Naiad [22], or Ray [37] can be used to
define exactly-once semantics for ensuring fault tolerance
as well as aggregation operations (e.g. joins) over multiple
(potentially stateful) streams. These interfaces, however, do
not easily let developers automatically specify hierarchical
nesting of streams and track the ancestry of partial outputs
through this hierarchy as data fans out over downstream
stages. Therefore existing streaming systems will have diffi-
culty enforcing aggregation-aware routing at different gran-
ularities throughout the pipeline.

3.2 Efficient Load Balancing across Prompts
Streaming partial outputs between pipeline stages can gen-
erate dynamic fan-out of partial outputs spanning multiple
quanta. This can complicate load balancing for LM stages.
Table 1 measures this fan-out for the LM stages within the
FacTool-inspired pipeline from Figure 1. We observe that
each prompt generates partial outputs which vary signifi-
cantly across their size and processing times. Figure 5 further
illustrates the diversity across prompts. In this experiment
we plot the latency achieved by each prompt type in the
FacTool-inspired pipeline as we increase the number of re-
quests; here each prompt saturates a single GPU at a different
rate.

Stage Overall
Count

Per-output
Quantum

Average
Outputs

Average Length /
Output (words)

Average Time /
Output (ms)

Question Answering 10795 Response
(paragraphs) - 62.5 ± 57.2 1292.3 ± 1175.0

Claim Extraction 10795 Claim 3.3 ±1.8 9.8 ± 3.5 403.6 ± 1175.0

Search Query
Generation 35516 Search query 2.5 ± 1.3 5.5 ± 3.1 326.6 ± 252.4

Search query token 5.5 ± 3.1 - 59.8 ± 79.3

Table 1. Statistics measured from a run of the FacTool-
inspired pipeline from Figure 1. Inputs are issued at a rate of
15 requests / second for 12 minutes. Each prompt generates
a different output unit and number of outputs.

Serving LM instances efficiently with streaming requires
load balancing the dynamic fan-out across downstream stages.
The experiment detailed in §2 fixes a particular prompt to
each LM instance, but statically assigning prompts precludes
adapting to workload-dependent dynamic fan-out in the
pipeline. If the static assignment does not match the rela-
tive frequencies of each prompt, instances serving certain
prompts will be under-utilized while other instances serving
other prompts will be over-utilized.
An ideal load balancing strategy should dynamically for-

ward requests for all prompts across all LM instances, with-
out fixing a static assignment. Remaining completely agnos-
tic to the prompt content, however, may also compromise
serving throughput. LM serving engines [13, 16, 45] are ca-
pable of re-using KV cache state for frequently occurring
prompts that share a common prefix, thereby improving

120

Question Answering Claim Extraction Search Query Generation

5 10 15 20 25
Achieved Load (Requests / Second)

0.0

2.5

5.0

7.5

10.0

M
ed

ia
n

La
te

nc
y

(s
ec

on
ds

)

(a) Median Latency vs Achieved Load.

5 10 15 20 25
Achieved Load (Requests / Second)

0

10

20

30

40

P9
9

La
te

nc
y

(s
ec

on
ds

)

(b) P99 Latency vs Achieved Load.

Figure 5.Microbenchmark measuring the diversity in per-
formance achieved by each prompt in the FacTool-inspired
pipeline from Figure 1. We only include points where the
achieved load was ≥ 80% of the offered load.

overall request throughput. Maximally leveraging this opti-
mization requires issuingmany requests with the same prefix
to the same LM instance (i.e. maximizing prompt locality).
While LM serving engines apply local scheduling algorithms
to maximize in-batch prompt locality [45], scheduling has
to happen at the network level to encourage locality across
distributed LM instances.

Unfortunately, enforcing prompt locality directly conflicts
with the goal of retaining load balancing flexibility across
different prompts. Resolving this tension is a key challenge
for efficient load balancing, and requires distributed prompt-
aware scheduling; we discuss some preliminary ideas in §6.2.

4 ALTO System Design and Interface
This section describes a potential system design for ALTO
that does partial output streaming while addressing the chal-
lenges described in §3. Note that the version of ALTO used
to generate the results presented in §2 has the same general
architecture, but does not include the scheduler design for
aggregation constraints.
ALTO consists of two pieces: (1) an inference interface

for individual pipeline stages, with queues sitting between
stages, and (2) a central runtime that forwards data between
these stages.

ALTO has three design goals:
• Ensure partial state is aggregated correctly for any state-
ful pipeline stage. When certain pipeline stages must
aggregate fanned-out work, ALTO must ensure partial
outputs that need aggregation are sent to the same
instance of the stage.

• Load balance as much work as possible evenly across
replicas. While respecting aggregation constraints,
ALTO should load balance work that arrives at the
central scheduler as evenly as possible. ALTO should
maximize parallelism within queries where possible
when aggregation constraints permit.

• Lightweight interface to specify aggregation constraints
and prompt information. The interface to specify ag-
gregation constraints and prompt information should
be lightweight on top of the queueing interface.

To fulfill these goals, ALTO is modeled off of microser-
vices but deviates from existing microservice programming
models in two ways. Instead of RPCs, ALTO provides an API
to specify aggregation constraints and prompt information.
The scheduling algorithm uses this information to ensure
correctness and improve load balancing. The rest of this sec-
tion describes the basic queueing interface, explains how
developers specify aggregation constraint and prompt infor-
mation, and defines a scheduling algorithm that uses this
information to load balance across stages.

Developer interface.Application developers specify a pipeline
by a sequence of stages. Stages process data, executing LMs
and aggregation or other computation steps, and communi-
cate data to downstream stages through queues. Application
developers use Protocol Buffers [35] to specify the data for-
mat of each queue. Each stage reads data off of its input
queues, processes the data, and pushes output data onto one
or more queues to the next stages.

4.1 Aggregation Constraints Interface
At a high level, ALTO lets the central scheduler know about
aggregation constraints and prompt affinities via a header
on each data item in a queue. Application developers specify
these headers to define when aggregation is required at at
what granularity. For example, for the FacTool pipeline a
query can be tagged with a query_id, but when the pipeline
generates a claim for the query in a later stage, the applica-
tion can augment the header with a claim_id to ensure that
aggregation will take place correctly at both the claim and
query level.

The following code snippet shows how the queue interface
includes this argument:

write(
queue="bm25", obj=Token(...), id=obj_id,
constraints=[obj_id, claim_id, query_id]

)

The first part of the header is an array of integers and allows
an application to express custom aggregation constraints: as
long as the application attaches the same array of integers to
any data that needs to be aggregated (e.g., the global obj_id,
claim_id, and question_id for any individual token sent
to BM25 in the FacTool pipeline), the central scheduler will

121

send all this data to the same instance of the destination
stage.

4.2 Scheduling Policy
The ALTO runtime currently uses a simple scheduling pol-
icy to respect aggregation constraints while still maximizing
parallelism opportunities. When data arrives for a given
stage, the scheduler checks to see whether an aggregation
constraint exists in front of the data. If it does, it hashes
the aggregation constraint and mods it with the number of
instances for the destination stage; this ensures that data
with the same aggregation constraints are forwarded to the
same instance. If not, ALTO chooses the next instance in
a round robin fashion. This simple algorithm could be aug-
mented with techniques such as consistent hashing to ensure
even load balancing in the case of instances coming up and
down. Note that the ALTO scheduler does not yet support
distributed prompt-aware scheduling, but we discuss prelim-
inary ideas in §6.2.

5 Implementation
Figure 6 presents a system diagram of ALTO. ALTO includes
a centralized runtime which routes data through a series of
asynchronous queues. Applications running on top of ALTO
communicate with the centralized runtime by receiving data
from input queues and sending intermediate data through
output queues.

Queues. ALTO uses queues to asynchronously forward data
between pipeline stages. Each queue is a wrapper over two
reliable UNIX domain sockets, though this can be expanded
to a multi-node setting by wrapping a network socket in-
stead. One socket is from the source stage to the central
runtime (output queue), while the second socket is from the
central runtime to the next stage (input queue). Each queue
has an associated user-defined Protobuf describing the data
type (e.g., Token or Claim). Deserialization only happens
in the application; in-flight data is not deserialized as it is
forwarded through the runtime.

Centralized runtime. The ALTO runtime accepts as input two
configuration files: the first specifies the individual pipeline
stages as well as their resource requirements and input and
output queue names, while the second specifies how many
instances to spawn for each pipeline stage. The runtime
automatically adds a global request ID to the data headers
corresponding to each request. The runtime is also respon-
sible for enforcing aggregation constraints and scheduling
in-flight data as discussed in §4. The runtime is implemented
in ∼7000 lines of Rust.

Applications. In our prototype implementation, ALTO stages
are written in Python. The ALTO runtime passes the input

ALTO Runtime

Stage 1

Stage 1

…

…

Aggregation

Constraints
Pipeline Specification Instance Specification

Stage 2

Stage 2

…

Stage N

Stage N

…

Figure 6. ALTO system diagram. ALTO includes an asyn-
chronous queueing interface and centralized runtime to au-
tomatically route data between pipeline stages.

and output queue names to each stage when it is started,
and then the developer then calls an ALTO library function
to initialize the application-side sockets. The application-
side queues use asyncio for asynchronous execution. ALTO
supports arbitrary LM serving engines as long as they can
interface with asyncio and asynchronously stream incre-
mental outputs. We have currently implemented integrations
with vLLM [16] and SGLang Runtime [45].

6 Discussion
Here we discuss opportunities to improve the current ag-
gregation interface and design a distributed prompt-aware
scheduler.

6.1 Improving Constraint Interface
While the interface described in §4 can correctly express ag-
gregation constraints, it requires the developer to manually
specify tags to define the aggregation logic for stateful stages.
Instead, ALTO should automatically infer aggregation logic
from the pipeline structure itself, via extra annotations pro-
vided by the programmer. The annotations would provide
a way to tell ALTO which stages are stateful and aggregate
data, and which stages cause fan-out (produce multiple par-
tial outputs for a single inputs). Using these hints, ALTO
can automatically infer tags. For example, in the FacTool
pipeline from Figure 1, the developer could annotate that
stage 4 is stateful, and how many levels of quanta this stage
aggregates. The runtime could then infer the aggregation
constraint that all search query tokens should go to a con-
sistent BM25 instance, and generate the tags needed by the
scheduler.
Another opportunity would be to implement a general

set of aggregation operators to express a wide variety of
aggregation patterns. Currently each application running
on top of ALTO must implement bespoke aggregation logic,
but instead the common design patterns could be abstracted

122

away into a librarywhich is tied to the aggregation constraint
interface. Potential operators for this library would include
sum, top-k, count, and filter.

6.2 Distributed Prompt-Aware Scheduling
Our current implementation of the ALTO scheduler takes
into account aggregation constraints based on developer-
specified headers, but does not use information about prompts
when scheduling. There are two opportunities here: profiling
the relative resource consumption across prompts and under-
standing the optimal resource allocations between prompts,
and prompt-aware routing. As discussed in §3, recent work
on language model serving [13, 16, 45] has demonstrated
that LM throughput can improve when requests sharing the
same prompt prefix are routed through the same LM. ALTO
can take advantage of these opportunities with a distributed
prompt-aware scheduling algorithm.

The design goals for a distributed prompt-aware schedul-
ing algorithm are twofold:

1. Support flexible load balancing to handle dynamic fan-
out (understand the relative resource consumption
between prompts and automatically assign GPU time
to prompts based on this).

2. Maximize prompt locality when possible (to take ad-
vantage of LM engines’ prompt sharing optimizations).

A first-pass attempt at designing a distributed prompt-aware
scheduling algorithm to achieve these goals would involve
two mechanisms: a mechanism to measure statistics about
each prompt’s relative resource consumption and a mecha-
nism to route a prompt request to a particular LM instance.
For the first mechanism, the scheduler could keep track of
statistics related to how much output data each prompt re-
quest tends to create, and how long each request type takes
to serve, and queuing delay at each LM instance. Measuring
these statistics accurately is challenging as model serving
engines contain internal scheduling mechanisms to handle
batching, which sometimes de-prioritize requests relative to
others (e.g., Radix attention). For the second mechanism, we
speculate the scheduler could run an optimization problem
using these statistics, which also encourages “sticky” routing
rules, where it keeps sending requests for the same prompt
to the same LM instance. We defer fully exploring these ideas
to future work.

7 Related Work
CompoundAI system front-endsMany frameworks and domain-
specific programming languages offer interfaces for express-
ing compound AI systems using high level abstractions [6, 14,
19, 45]. ALTO can efficiently serve the pipelines expressed
in these higher level abstractions given some intermediate
translation layer.

LM serving systems LM serving systems optimize LM infer-
ence throughput by efficiently managing the memory used
by the LM computation across requests [13, 16, 45]. These
engines and many commercial LM API endpoints also ex-
pose interfaces for streaming tokens. Unlike ALTO, these
systems do not handle distributed deployments nor the as-
sociated correctness and load balancing challenges which
emerge when streaming partial outputs. Furthermore, these
systems exclusively optimize LMs rather than combinations
of LMs with other tools. ALTO can use these systems as
high-throughput LM executors as we discuss in §5.

Parallelizing compound AI systems Previous works have tried
to automatically parallelize graphs of LM calls [15, 23, 30].
While ALTO can also execute logically parallel stages con-
currently, these approaches do not leverage partial output
streaming or handle any of the correctness and load balanc-
ing concerns discussed in §3.

Stream processing Streaming query engines have been widely
explored in the database and systems communities [1, 4, 5, 22,
36, 37, 43]. These systems execute long-running queries that
continuously output results while pipelining computations
and reliably maintaining long-lived state. Like these systems,
ALTO streams partial results between nodes, but it aims to
minimize end-to-end latency for relatively short AI pipeline
computations. The varying resource consumption of queries
(e.g., longer or shorter LM outputs) also creates a need for
dynamic pipeline-aware scheduling at a fine granularity in
ALTO to keep worker nodes efficiently utilized.

Microservice serving systems Many distributed system frame-
works are capable of deploying pipelines of logically indepen-
dent computation stages as microservices and using queues
to communicate data between these stages [21, 39]. Some
are even optimized for machine learning workloads in partic-
ular [9]. In contrast to ALTO, these systems do not leverage
the autoregressive generation property of LMs to facilitate
partial output streaming.

8 Conclusion
This paper presents ALTO, a system that orchestrates com-
pound AI system pipelines built around generative language
models. ALTO is based on the observation that generative
language models produce output incrementally, such that
they can be streamed through a distributed pipeline. How-
ever, as some pipeline stages can parallelize outputs while
others must aggregate them, correctly routing tokens re-
quires careful orchestration and load balancing. ALTO pro-
vides an interface to specify such routing requirements. Ex-
perimental results show that ALTO’s pipelining can both
reduce latency and increase throughput of a representative
compound AI application.

123

Acknowledgments
This research was supported in part by affiliate members and
other supporters of the Stanford Platform Lab and the Stan-
ford DAWN Project including VMware, Meta and Google,
as well as the NSF under Career Grant CNS-1651570, Grad-
uate Research Fellowship Grant DGE-1656518, and Grant
No. 1931750. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation.

References
[1] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin,

E. Galvez, M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker,
N. Tatbul, Y. Xing, R. Yan, and S. Zdonik. 2003. Aurora: a data stream
management system. In Proceedings of the 2003 ACM SIGMOD Inter-
national Conference on Management of Data (San Diego, California)
(SIGMOD ’03). Association for Computing Machinery, New York, NY,
USA, 666. https://doi.org/10.1145/872757.872855

[2] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shix-
iong Zhu, Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. 2018.
Structured streaming: A declarative api for real-time applications in
apache spark. In Proceedings of the 2018 International Conference on
Management of Data. 601–613.

[3] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas
Gianinazzi, Joanna Gajda, Tomasz Lehmann, Michal Podstawski, Hu-
bert Niewiadomski, Piotr Nyczyk, et al. 2023. Graph of thoughts:
Solving elaborate problems with large language models. arXiv preprint
arXiv:2308.09687 (2023).

[4] Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos,
Volker Markl, and Kostas Tzoumas. 2015. Apache Flink: Stream and
batch processing in a single engine. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering (12 2015).

[5] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.
Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Samuel Madden, Frederick Reiss, and Mehul A. Shah. 2003. Tele-
graphCQ: Continuous Dataflow Processing. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, San
Diego, California, USA, June 9-12, 2003. 668. https://doi.org/10.1145/
872757.872857

[6] Harrison Chase. 2022. LangChain. https://github.com/langchain-
ai/langchain

[7] Jifan Chen, Grace Kim, Aniruddh Sriram, Greg Durrett, and Eunsol
Choi. 2023. Complex Claim Verification with Evidence Retrieved in
the Wild. arXiv preprint arXiv:2305.11859 (2023).

[8] I Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua Feng, Chunting
Zhou, Junxian He, Graham Neubig, Pengfei Liu, et al. 2023. Fac-
Tool: Factuality Detection in Generative AI–A Tool Augmented Frame-
work for Multi-Task and Multi-Domain Scenarios. arXiv preprint
arXiv:2307.13528 (2023).

[9] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion
Stoica, Joseph Gonzalez, and Alexey Tumanov. 2020. InferLine: latency-
aware provisioning and scaling for prediction serving pipelines. In
Proceedings of the 11th ACM Symposium on Cloud Computing. 477–491.

[10] Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu,
Xian Li, Asli Celikyilmaz, and Jason Weston. 2023. Chain-of-
Verification Reduces Hallucination in Large Language Models. arXiv
preprint arXiv:2309.11495 (2023).

[11] Jie Huang, Wei Ping, Peng Xu, Mohammad Shoeybi, Kevin Chen-
Chuan Chang, and Bryan Catanzaro. 2023. Raven: In-context learning
with retrieval augmented encoder-decoder language models. arXiv

preprint arXiv:2308.07922 (2023).
[12] Gautier Izacard and Edouard Grave. 2021. Leveraging Passage Retrieval

with Generative Models for Open Domain Question Answering. In
EACL 2021-16th Conference of the European Chapter of the Association
for Computational Linguistics. Association for Computational Linguis-
tics, 874–880.

[13] Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y. Fu, Christo-
pher Ré, and Azalia Mirhoseini. 2024. Hydragen: High-Throughput
LLM Inference with Shared Prefixes. arXiv:2402.05099 [cs.LG]

[14] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang,
Keshav Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma,
Thomas T Joshi, Hanna Moazam, et al. 2023. Dspy: Compiling declara-
tive language model calls into self-improving pipelines. arXiv preprint
arXiv:2310.03714 (2023).

[15] Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W
Mahoney, Kurt Keutzer, and Amir Gholami. 2023. An LLM Compiler
for Parallel Function Calling. arXiv preprint arXiv:2312.04511 (2023).

[16] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
2023. Efficient memory management for large language model serving
with pagedattention. In Proceedings of the 29th Symposium on Operating
Systems Principles. 611–626.

[17] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-
Augmented Generation for Knowledge-Intensive NLP Tasks. In Ad-
vances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Asso-
ciates, Inc., 9459–9474. https://proceedings.neurips.cc/paper_files/
paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf

[18] Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang, Bowen Li,
Bailin Wang, Bowen Qin, Rongyu Cao, Ruiying Geng, et al. 2023. Can
llm already serve as a database interface? a big bench for large-scale
database grounded text-to-sqls. arXiv preprint arXiv:2305.03111 (2023).

[19] Jerry Liu. 2022. LlamaIndex. https://doi.org/10.5281/zenodo.1234
[20] Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke,

Rithesh Murthy, Yihao Feng, Zeyuan Chen, Juan Carlos Niebles, De-
vansh Arpit, et al. 2023. Bolaa: Benchmarking and orchestrating llm-
augmented autonomous agents. arXiv preprint arXiv:2308.05960 (2023).

[21] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I Jordan, et al. 2018. Ray: A distributed framework for emerg-
ing {AI} applications. In 13th USENIX symposium on operating systems
design and implementation (OSDI 18). 561–577.

[22] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martín Abadi. 2013. Naiad: a timely dataflow system.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (Farminton, Pennsylvania) (SOSP ’13). Association
for Computing Machinery, New York, NY, USA, 439–455. https://doi.
org/10.1145/2517349.2522738

[23] Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang,
and Yu Wang. 2023. Skeleton-of-thought: Large language models can
do parallel decoding. Proceedings ENLSP-III (2023).

[24] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin.
2019. Multi-stage document ranking with BERT. arXiv preprint
arXiv:1910.14424 (2019).

[25] Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez.
2023. Gorilla: Large language model connected with massive apis.
arXiv preprint arXiv:2305.15334 (2023).

[26] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
2016. Squad: 100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250 (2016).

124

https://doi.org/10.1145/872757.872855
https://doi.org/10.1145/872757.872857
https://doi.org/10.1145/872757.872857
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2402.05099
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.5281/zenodo.1234
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738

[27] Ori Ram, Yoav Levine, Itay Dalmedigos, DorMuhlgay, Amnon Shashua,
Kevin Leyton-Brown, and Yoav Shoham. 2023. In-context retrieval-
augmented language models. arXiv preprint arXiv:2302.00083 (2023).

[28] Stephen Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and
M. Gatford. 1995. Okapi at TREC-3. In Overview of the Third Text
REtrieval Conference (TREC-3) (overview of the third text retrieval
conference (trec–3) ed.). Gaithersburg, MD: NIST, 109–126. https:
//www.microsoft.com/en-us/research/publication/okapi-at-trec-3/

[29] Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu, Tianpeng Bao,
Guoqing Du, Shiwei Shi, Hangyu Mao, Xingyu Zeng, and Rui Zhao.
2023. Tptu: Task planning and tool usage of large language model-
based ai agents. arXiv preprint arXiv:2308.03427 (2023).

[30] Swarnadeep Saha, Omer Levy, Asli Celikyilmaz, Mohit Bansal, Ja-
son Weston, and Xian Li. 2023. Branch-solve-merge improves
large language model evaluation and generation. arXiv preprint
arXiv:2310.15123 (2023).

[31] Keshav Santhanam, Omar Khattab, Christopher Potts, and Matei Za-
haria. 2022. PLAID: an efficient engine for late interaction retrieval.
In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management. 1747–1756.

[32] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts,
and Matei Zaharia. 2022. ColBERTv2: Effective and Efficient Retrieval
via Lightweight Late Interaction. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 3715–3734.

[33] Sina Semnani, Violet Yao, Heidi Zhang, and Monica Lam. 2023. Wi-
kiChat: Stopping the Hallucination of Large Language Model Chatbots
by Few-Shot Grounding on Wikipedia. In Findings of the Association
for Computational Linguistics: EMNLP 2023. 2387–2413.

[34] Ruoxi Sun, Sercan O Arik, Hootan Nakhost, Hanjun Dai, Rajarishi
Sinha, Pengcheng Yin, and Tomas Pfister. 2023. SQL-PaLM: Improved
Large Language ModelAdaptation for Text-to-SQL. arXiv preprint
arXiv:2306.00739 (2023).

[35] Kenton Varda. 2008. Protocol buffers: Google’s data interchange for-
mat. https://opensource.googleblog.com/2008/07/protocol-buffers-
googles-data.html.

[36] GuozhangWang, Lei Chen, AyusmanDikshit, JasonGustafson, Boyang
Chen, Matthias J Sax, John Roesler, Sophie Blee-Goldman, Bruno
Cadonna, Apurva Mehta, et al. 2021. Consistency and completeness:
Rethinking distributed stream processing in apache kafka. In Pro-
ceedings of the 2021 international conference on management of data.
2602–2613.

[37] Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz,
Ujval Misra, Alexey Tumanov, and Ion Stoica. 2019. Lineage stash:
fault tolerance off the critical path. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles. 338–352.

[38] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi,
Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. 2022. Self-
Consistency Improves Chain of Thought Reasoning in Language Mod-
els. In The Eleventh International Conference on Learning Representa-
tions.

[39] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An archi-
tecture for well-conditioned, scalable internet services. ACM SIGOPS
operating systems review 35, 5 (2001), 230–243.

[40] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang,
Erkang Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023.
Autogen: Enabling next-gen llm applications via multi-agent conver-
sation framework. arXiv preprint arXiv:2308.08155 (2023).

[41] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths,
Yuan Cao, and Karthik Narasimhan. 2023. Tree of thoughts: Delib-
erate problem solving with large language models. arXiv preprint
arXiv:2305.10601 (2023).

[42] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R
Narasimhan, and Yuan Cao. 2022. ReAct: Synergizing Reasoning and

Acting in Language Models. In The Eleventh International Conference
on Learning Representations.

[43] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. 2013. Discretized streams: fault-tolerant
streaming computation at scale. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (Farminton, Pennsyl-
vania) (SOSP ’13). Association for Computing Machinery, New York,
NY, USA, 423–438. https://doi.org/10.1145/2517349.2522737

[44] Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis,
Heather Miller, Chris Potts, James Zou, Michael Carbin, Jonathan Fran-
kle, Naveen Rao, and et al. 2024. The Shift from Models to Compound
AI Systems. https://bair.berkeley.edu/blog/2024/02/18/compound-ai-
systems/

[45] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue
Sun, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E
Gonzalez, et al. 2023. Efficiently Programming Large Language Models
using SGLang. arXiv preprint arXiv:2312.07104 (2023).

125

https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html
https://doi.org/10.1145/2517349.2522737
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

	Abstract
	1 Introduction
	2 Streaming can improve performance of serving pipelines
	3 Challenges
	3.1 Correctness
	3.2 Efficient Load Balancing across Prompts

	4 ALTO System Design and Interface
	4.1 Aggregation Constraints Interface
	4.2 Scheduling Policy

	5 Implementation
	6 Discussion
	6.1 Improving Constraint Interface
	6.2 Distributed Prompt-Aware Scheduling

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

