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Abstract
Compute Express Link (CXL) is a replacement for PCIe. With
much lower latency than PCIe and hardware support for cache
coherence, programs can efficiently access remote memory
over CXL. These capabilities have opened the possibility of
CXL memory pools in datacenter and cloud networks, consist-
ing of a large pool of memory that multiple machines share.
Recent work argues memory pools could reduce memory
needs and datacenter costs.

In this paper, we argue that three problems preclude CXL
memory pools from being useful or promising: cost, complex-
ity, and utility. The cost of a CXL pool will outweigh any
savings from reducing RAM. CXL has substantially higher
latency than main memory, enough so that using it will re-
quire substantial rewriting of network applications in complex
ways. Finally, from analyzing two production traces from
Google and Azure Cloud, we find that modern servers are
large relative to most VMs; even simple VM packing algo-
rithms strand little memory, undermining the main incentive
behind pooling.

Despite recent research interest, as long as these three
properties hold, CXL memory pools are unlikely to be a
useful technology for datacenter or cloud systems.

CCS Concepts
• Networks → Data center networks; • Information sys-
tems → Enterprise resource planning.
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1 Introduction
Memory is an expensive component of datacenter and cloud
servers: recent papers report its fraction of a server’s cost is
40% for Meta [14] and 50% for Azure [21]. Google faces
similar pressures [6]. The pressure to reduce RAM needs
and costs has motivated work in far memory [18], memory
compression [12], and Intel Optane memory, which trades off
performance for lower cost [17]. If a server has insufficient
memory, it can have free cores but no available memory
(stranded cores); if it has too much memory it can have free
memory that cores do not use (stranded memory).

One approach to reduce RAM costs is to disaggregate mem-
ory through a shared pool. In this model, servers have their
own local RAM, which is sufficient for average or expected
use. If a server needs more memory or has stranded cores,
it can allocate from a pool shared among several servers. A
memory pool needs to solve two major problems: latency and
cache coherence. Main memory in a larger server CPU has
a latency of 120-140ns; if a memory pool’s latency is much
higher, application performance will suffer.

The Compute Express Link (CXL) protocol promises to
provide low-latency, cache coherent access to remote mem-
ory. With claimed latencies in the hundreds of nanoseconds,
CXL can build a large memory pool shared across several
servers. Disaggregating storage from compute led to much
more efficient and scalable datacenter storage [7]; disaggre-
gating memory from compute could have a similar impact,
enabling more efficient and lower cost computing.

Unfortunately, this paper argues that CXL memory pool-
ing faces three major problems. Each of these problems, in
isolation, might limit potential use cases but is surmountable.
Together, however, they mean that CXL memory pools cost
more, require rewriting software, and do not reduce resource
stranding (e.g., unused memory).

The first problem is cost. The primary benefit of a CXL
memory pool is reducing the aggregate RAM needs of data-
center and cloud systems. Today, servers are provisioned so
they can keep all of their VMs or containers in memory even
when all of them maximize their footprint simultaneously (a
“sum-of-max” approach). Using a CXL pool can allow servers
to instead provision for expected use, and when VMs uses
their entire footprint the system can store cold data in a CXL
pool. This cost calculation, however, ignores infrastructure
costs. CXL requires a completely parallel network infras-
tructure to Ethernet, consisting of a top-of-rack (or top-of-N
server) CXL appliance, with direct, alternative cabling to all
of its servers.

The second problem is software complexity. Recent ex-
perimental results from real CXL hardware find that many of
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CXL’s latency claims are best-case estimates. For example,
estimates in the Pond system are that CXL will add 70-90ns
over same-NUMA-node DRAM. Recent experimental results,
however, are that CXL adds 140ns for pointer chasing work-
loads [19]. This slowdown is for a directly-connected CXL
memory device, not a shared pool, which adds switching,
re-timers, and queueing. While loads and stores to a CXL de-
vice will be much slower than DRAM, hardware-accelerated
copies of 8kB blocks are close to DRAM speed [20]. There-
fore, achieving good performance involves rewriting software
to explicitly manage CXL memory, copying blocks into lo-
cal DRAM; this explicit, conditional, and pervasive mem-
ory management increases software complexity. Furthermore,
maintaining multiple copies reduces CXL’s memory savings.

The third problem is limited utility. The primary argument
for CXL memory is that memory that would otherwise be
stranded, i.e. memory that cannot be allocated to a VM be-
cause there are no more compute resources to support a VM,
can now be pooled and used by other servers. However, after
analyzing common server and VM shapes in a 2019 Google
cluster trace [22] and 2020 Azure Cloud trace [9] using a
methodology we developed to evaluate the conditions when
memory pooling can improve stranding, we conclude pooling
is rarely helpful. Modern servers are large (hundreds of cores
and terabytes of RAM), and VMs are small enough, that VMs
can be placed on a single server with little stranding. For the
traces we examined, the ratio of VM to server sizes must in-
crease by 32x (Google) and 8x (Azure) before pooling yields
even modest efficiency gains. To the best of our knowledge,
this is the first methodology for estimating the potential of
memory pooling for resource packing.

In summary, as long as the cost, software complexity, and
lack of utility properties hold, sharing a large DRAM bank
between servers with CXL is a losing proposition. If one of
these issues goes away – CXL is cheap, CXL is nearly as fast
as main memory, or VM shapes become difficult to pack into
servers – then CXL memory pools might prove to be useful.

2 CXL Memory Pools
This section explains Compute Express Link (CXL) and how
CXL memory pools work. Readers familiar with CXL can
skip this section. Because many of the details of CXL are
extraneous to this paper, we gloss over them; an interested
reader can consult the specifications [3–5].

2.1 CXL
In this paper, we focus on CXL 1.1, the first productized ver-
sion. Samsung [15], Intel [10], and Astera Labs [1] produce
CXL 1.1 devices, but none of them are generally available;
they are only for pilot use and commercial evaluation. Version
3.0 was published in August, 2022 [5].

CXL 1.1 uses the same physical layer (connections and
signaling) as PCIe. PCIe connections consist of one or more
parallel “lanes”. CXL 1.1 uses PCIe Gen5 signaling, which
provides 3.9GB/s per lane. CXL devices can have 1-32 lanes.

Figure 1: Processing path of a memory load (into a CXL
Request) in a dual-socket server to a memory pool con-
nected through. Queueing is possible at almost every
transition. The response goes through the same path;
lookups become updates.

A Samsung 128GB CXL memory device, for example, uses
8 lanes to support a maximum throughput of 35GB/s. [16]
CXL 3.0 uses PCIe Gen6 to double per-lane throughput. PCIe
Gen7 is expected to double throughput again (to 15GB/s),
but this approaches the practical limit for a differential pair
(224Gbps) due to gate switching latencies.

CXL differs from PCIe in two major ways: lower latency
and cache coherence. CXL strips out many of the protocol
overheads of PCIe to reduce latency. While PCIe Gen5 de-
vices have best-case round-trip-time latencies of over 500ns,
CXL devices can be as low as 150ns. This is the minimum
signaling latency: it does not include the time for a device to
generate a response (e.g., read from DRAM), any protocol
processing, or queueing delays. While CXL 3.0 increases the
throughput of CXL, it will not have lower latency [11] as
packetization delay is not significant.1

CXL’s second improvement is hardware cache coherence.
This is useful for devices such as NICs or GPUs, but it is less
important for memory pools, which typically do not allow
servers to share memory.

2.2 Inside a CXL Pool
CXL memory pools can take many forms; in this section, we
focus on the cloud use case of multiple servers connecting to a
single device through separate physical links (called a “multi-
headed device”), as proposed by Pond. [13] We assume the
best-case use of a CXL pool, in which effectively all memory
accesses are to memory that is exclusive to a single server,
such that there are no cache coherence overheads.

Figure 1 decomposes the sources of latency when reading
from a CXL memory pool. First, there are the standard mem-
ory latency costs: a core must detect that the memory is not in
1For a 16-lane device at 62GB/s, a 256 byte CXL flit takes 4ns.
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any cache or local DRAM. In a dual-socket system (common
in cloud servers today), the CXL device might be connected
to either socket’s PCIe/CXL lanes, so there is potentially the
latency overhead of the CPU interconnect from one socket to
the other. The processor’s memory management unit (MMU)
must transform a memory request into a CXL request. This
enters the CXL root port, which dispatches it to the virtual
switch (VCS) and virtual PCI-to-PCI bridge (vPPB) of the
device; this dispatch is necessary because a port’s many lanes
can be allocated to many devices (e.g., 16 lanes can be al-
located to 4 different 4-lane M.2 SSDs). The read request
is packetized, encoded, and modulated onto the CXL link,
adding packetization and propagation delays.

On reception, the CXL read request has to be reassem-
bled from the parallel lanes, decoded and passed to the CXL
memory controller. After protocol processing. the controller
translates the request into DDR memory read requests. DDR
reads are striped across multiple DDR sockets to maximize
bandwidth. Once the data is assembled, the CXL device re-
sponds with a data response, which goes through a similar
switching, processing, and encoding as the request did.

At every step of this process, there can be queueing. E.g.,
CXL read requests can queue at the client, memory read
requests can queue at the device, DDR read requests can
queue in the DDR memory controller, etc.

2.3 Pond, an example CXL Pool
Pond is a recent proposal for using a CXL memory pool to
reduce RAM spending in cloud/VM systems [13]. Through
extensive analysis of Azure workloads, the paper finds that
a sizeable fraction of Azure memory is stranded: some VMs
request a low RAM-to-CPU ratio, such that some servers
have unused RAM but every core is in use. Pond argues
that by moving a fraction of every server’s memory to a
CXL pool and statistically multiplexing the memory, a pool
can reduce the total memory needed: memory that is unused
today can instead be used by another server. The tradeoff is
performance: since some VM memory is in the CXL pool, it
is slower. Through careful prediction of which applications
are latency sensitive and which pages are untouched or rarely
touched, Pond can reduce overall DRAM requirements by
7–9% with only 2% of VMs seeing performance degrade by
more than 5%.

2.4 The Case Against Memory Pools
We argue that, despite recent interest, CXL memory pools
are not an effective way to provision networked servers. They
seem like an exciting possibility and fruitful area of research,
but this rosy picture is built on three mistaken and simplified
assumptions: cost, complexity, and utility. The next three
sections examine each issue in detail.

3 Cost
The first obstacle for CXL memory pools is their cost. On
one hand, RAM is a large fraction of server cost, so a shared

pool to meet peak needs while reducing per-server memory
would reduce costs. We argue that such an analysis makes two
assumptions that do not hold in practice. First, it assumes that
memory is fungible and it is possible to cut a server’s RAM by
a small fraction (e.g., 7-9% in the Pond paper [13]). Second,
it ignores the cost of an additional cabling and networking
infrastructure.

3.1 Memory Provisioning
Cloud and datacenter servers are limited to discrete steps in
DRAM capacity; small reductions in memory do not necessar-
ily translate to cost savings. Modern server CPUs have 8 (In-
tel) or 12 (AMD) DDR channels. Because many applications
are memory bandwidth bound, servers always populate ev-
ery channel. DIMMs, however, only come in certain discrete
sizes (e.g., 32GB, 48GB, 64GB)2, and every channel must
have the same sized DIMM. For example, a modern AMD
Genoa CPU has 12 channels and 192 cores (384 vCPUs). A
Genoa server can be configured with 750GB (64GB DIMMS),
1.15TB (96GB DIMMS), or 1.5TB (128GB DIMMS), but no
intervening values.

Pond finds that allocating 25% of VM memory (on aver-
age) to a shared pool leads to only small slowdowns (1%
of VMs slow down by more than 5%). This is achievable,
e.g., by replacing 128GB DIMMs with 96GB DIMMS. While
achievable, allocating 25% of memory to a pool does not
reduce the amount of memory. The servers still need the same
amount of memory, just some of it is in a CXL-connected
memory appliance.

More importantly, Pond also finds that a CXL memory pool
can reduce total RAM by 7-9% without significantly harming
performance. Some VM memory is unused, and by clustering
many servers worth of VMs together, Pond can aggregate
these savings. However, as one cannot shrink server RAM
by 7% or 9%, servers must cut their RAM by 25%, and the
memory pool takes the 7–9% out of this 25%. This, in turn,
requires targeting a very specific amount of memory in the
CXL pool device, which is difficult given the need to populate
every socket to maximize throughput and the large jumps in
DIMM size. There are some specific configurations where
this can work out, but using them constrains the rest of the
system to specific amounts of memory, numbers of cores, and
degree of CXL pooling.

3.2 CXL Infrastructure
CXL memory pools are not free. We find that their costs
exceed any savings from reducing RAM. When considering
cost tradeoffs, we consider consumer (MSRP) prices. Cloud
providers and hyperscalers receive steep discounts, but as we
are considering relative costs and tradeoffs between compo-
nents, we make a simplifying assumption that hyperscaler
discounts are similar across high-volume parts.

2Today, sizes that are not a power of two, such as 48GB, are rare; we assume
vendors would produce large numbers for a cloud provider if asked.
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Figure 2: Minimum pool size for RAM cost savings to
equal switch cost as pool RAM cost decreases relative to
server RAM. Even if pool RAM is free, for a standard
4GB/core memory shape, the pool must be 24 nodes to
break even with just the switch cost.

Because there are no CXL memory pool devices today,
we do not know how much one costs. However, given the
speeds and processing involved, we propose that an Ethernet
switch is a good approximation. A CXL memory pool device
is effectively a high-speed switch, processing CXL packets,
managing cacheline state, reading and writing memory, and
sending responses back to servers. A standard CXL memory
device (e.g., a Astera Leo [1] or Intel device [10]) uses 16
lanes. At PCIe Gen5 speeds this is 480Gbps. A 16-server pool
therefore processes data at 7.6Tbps.

A modern, low-end, 32-port 200Gbps Ethernet switch such
as the Mellanox MSN3700-VS2F0 costs $38,500. [2] DDR5
RAM today is ≈ 3$/GB. For the CXL pool device to break
even with its RAM savings, it must save 12.6TB of RAM.
Assuming Pond’s optimistic 9% reduction, to break even with
just the switch, the servers must have 12.6𝑇𝐵

0.09 = 140TB of RAM
in aggregate (using Pond would reduce this to 127TB). For a
32-node pool, 127TB, means 4TB per server. A dual-socket
AMD Genoa server, the standard next-generation system for
cloud providers, has 384 vCPUs. At 4TB/server, there is
> 10GB of RAM per Genoa vCPU, more than high-RAM
VMs provide. You have to buy considerably more RAM for
Pond’s RAM savings to pay for themselves: you are better
off just buying less RAM.

What if pool RAM is cheaper than server RAM? E.g.,
it could be slower, more cost-efficient DIMMs, or DDR4.
Figure 2 shows how pool RAM cost affects the minimum
pool size to break even. These results assume the Genoa setup
described above, reducing server RAM by 25% of RAM, and
being able to reduce aggregate RAM by 9%. Even if pool
RAM is completely free, for a standard 4GB/core memory
shape, the pool must be 24 nodes to break even. For memory-
optimized VMs (8GB/core), if the pool memory is half the
cost of server memory (50%), a pool size of 20 could break
even with the switch cost.

This accounting is only the capital expenditure of the pool
device: it doesn’t include the cost of the cabling, assembly,

and maintenance to connect the servers to the pool, the cost
of the interface cards that connect to the cables, the space
costs of giving up rack slots to pools, or the energy costs of
the pool devices. It also does not consider any operational ex-
penditures for maintaining or managing this parallel network
infrastructure. We conclude that the costs of introducing CXL
devices into a datacenter network eclipse any cost savings of
reducing RAM.

4 Software Complexity
The second major problem with a CXL memory pool is that
it will significantly add to software complexity. Experimental
results from real hardware show that, for random accesses,
CXL devices are significantly slower than the best case num-
bers suggested in standards documents. While CXL has high
latency, its high throughput means that transferring larger
blocks of memory (a few kB) can be competitive with DRAM.
This requires explicitly copying the remote memory into local
memory; the CXL pool stops being memory accessed directly
and instead becomes a far memory cache.

Today, CXL devices are not commercially available, and
NDAs preclude publishing results without prior approval.
The only CXL experimental results we are aware of are from
a series of versions of a paper by authors from UIUC and
Intel [19] (the Pond paper [13] assumes values reported in
standards). Because we do not have an agreement with CXL
device vendors, we base our conclusions on these published
experimental results.3

4.1 CXL Performance
CXL memory devices are high throughput. They are typically
16-lane CXL devices; at PCIe Gen5 speeds, this is 480Gbps.
A single DDR5-4800 DIMM (standard on new servers today)
is 300Gbps. Server CPUs have many DIMMs, but 480Gbps
is fast and it can support reasonable copy performance of
larger objects. For example, a copy from CXL memory to
local DDR by a single core can use 80% of the bandwidth of
two DIMMs.

However, CXL memory devices are also high latency. The
UIUC measurement results of a directly connected (no switch-
ing) CXL device show CXL loads have best case latencies
of 2x of local memory, substantially slower than a remote
NUMA node (1.5x) [19]. For a modern server CPU (e.g.,
Sapphire Rapids, as used in the paper), this means a memory
access jumps from 140ns for local memory to 280ns for CXL
memory. At 2.0-3.0 GHz in a multiple-issue superscalar pro-
cessor, this latency stalls the CPU for over 500 instructions.
Switched system with re-timers will have higher latency.

3The revision of the UIUC/Intel paper accepted to MICRO [19] reports
results from multiple CXL devices, which vary greatly in performance. We
focus on latencies from the highest performance device measured, CXL-A,
which is an ASIC.
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4.2 Instructions or Transfers?
While CXL will perform poorly as a transparent far memory,
its throughput means it can read or write larger blocks with
good performance. For example, early Intel/UIUC results
show that synchronously copying 8kB from DRAM to CXL
memory can have 80% the throughput of DRAM-to-DRAM
copies when using the DSA memory copy accelerator. [20]

This involves explicitly copying CXL memory into local
memory. In this model, CXL memory is a far memory cache,
which processors can access faster than remote memory or
storage, but which programs must explicitly copy from. This
gets at a fundamental question with using CXL memory: how
does a program access it?

Instruction-level loads and stores operate on a cache line
granularity. Reasonable CXL performance, however, requires
8kB transfers. Unless an application can take an enormous
performance hit when accessing CXL memory, it cannot do
so transparently. Instead, it must do so explicitly, or the device
must act as a page-level cache (e.g., a far memory RAMdisk
partition).

Explicit copies require invasive changes to applications.
For example, suppose a program calculates the maximum
value over an array (tens of kB), and this array is in CXL
memory. The loop is fast, consisting of only 4 instructions. At
2 instructions per clock, it can process 2 bytes every clock. At
3GHz, 280ns is 840 ticks, and the loops processes 1680 bytes
in 280ns. A cache line is 64 bytes, so the processor must have
over 26 prefetches in flight in order to keep the pipeline busy.
Processors do not prefetch so deeply, so this loop will spend
most of its time stalled on CXL reads.

In contrast, a program that explicitly copies from CXL
memory into local memory will perform much faster, because
it pays the 280ns latency once then operates on local, in-cache
memory. However, the problem is that this requires an explicit
memory copy to local memory. It requires rewriting programs
to conditionally copy if data is in CXL; CXL memory is not
transparent and requires pervasive changes to software. Fur-
thermore, it requires making copies of data, which increases
application memory use.

5 Limited Utility
In this section we develop a methodology for estimating the
efficiency gains that can be recouped with memory pool-
ing. Our primary efficiency metric is utilization, defined as
used capacity
total capacity . The main argument for memory pooling is that it
can improve utilization by reducing the amount of stranded
memory, in other words reducing ‘total capacity’.

Methodology. To approximate utilization improvement
from memory pooling, we need to estimate a cluster’s uti-
lization. Utilization is a multi-dimensional bin-packing prob-
lem [8, 9, 23, 24], and to optimize efficiency, a datacenter
cluster scheduler should pack VMs onto physical machines
as tightly as possible. Of course, there are performance and
isolation considerations when packing workloads as tightly
as possible, so realistically, operators leave some fraction of

headroom on each machine. Despite this, the optimal bin
packing utilization of a machine is still a good proxy for the
actual utilization an operator can achieve in a real deployment;
later in this section, we validate that the optimal packing ap-
proximates an event-driven packer within reasonable error
bounds. Crucially, using the optimal utilization does not pin
efficiency gains to a specific cluster scheduler implementation
and enables faster analysis than re-running a full cluster trace.
Therefore, we define a cluster’s utilization as its utilization
under the optimal packing of a VM workload on the cluster.

To determine the efficiency gain of pooling, we calculate
the utilization improvement from adding a pool to a cluster.
We model a cluster as a set of machines. We model pooling
as a large machine that is 𝑁 -times the size of a machine.
𝑁 reflects the number of machines that share a CXL pool.
Note that modelling pooling as a large machine overestimates
the utilization gain from pooling, because the large machine
elides allocation boundaries. In a true pooling setup compute
resources must still be allocated to the machine boundary, and
memory resources must respect a machine and pool boundary.
Therefore any improvement due to pooling in this section
is a generous upper bound on what pooling can realistically
achieve.

Datacenter traces. For VM workloads and machine sizes
that are representative of real deployments, we analyze two
cluster traces, the 2019 Google cluster trace and 2020 Azure
Trace for Packing [9]. From each trace we derive a distribution
of VM demand and realistic machine sizes [22]. In the Google
trace, we use VMs and machines from Cell A and only include
VMs with production priority. In the Azure trace, we only
include VMs with high priority. Note that the Google trace
is a trace of internal workloads, and the Azure trace is for
cloud, or customer, VMs; we analyze both traces to see if the
two different settings affect the impact of pooling. We model
both machines and VMs as two-dimensional vectors of CPU
and memory.

Optimal packing. We use a vector bin-packing library
to calculate the optimal packing of each set of VMs. The
library takes a set of VMs and a machine size, and returns
the minimum number of machines it takes to pack the entire
set. Therefore, from a utilization perspective, ‘used capacity’
is always fixed, because we must land all VMs, but ‘total
capacity’ is variable, because it depends how optimally the
VMs can be packed on the given machine sizes.

Our optimal packing packs a snapshot of the cluster, which
is a simpler problem than the packing problem in a real cluster
scheduler, because the snapshot is not bound to previous
placement decisions and does not take VM departures and
arrivals into consideration. We packed many snapshots and
studied the result distribution; all snapshots had trends similar
to Figures 3 and 4.

Validation. We validate that a cluster’s utilization under
optimal packing is close to the utilization under a reasonable,
live cluster scheduler. We implement a greedy bin packer that
replays a cluster trace and compare the cluster’s utilization
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Figure 3: Google cluster trace: Pooling resources across
up to 16 machines yields does not yield utilization im-
provements until VMs are at least 32x larger.

Figure 4: Azure trace: Pooling resources across up to 16
machines does not yield utilization improvements until
VMs are at least 8x larger. These (cloud) VMs are much
larger than the VMs in the Google trace, but still not
large enough for pooling to matter.

after running the trace to the utilization of the optimal pack-
ing, at the snapshot of the cluster after the trace has been
played. We do this comparison for subsets of traces across all
8 cells available in the 2019 Google trace and find that opti-
mal packing utilization is 0-17% better than the utilization of
the greedy bin packer, with a median difference of 5%. This
greedy bin packer is likely worse at packing workloads than
production-grade cluster schedulers, which means that the
optimal packing can even more closely approximate the uti-
lization of production-grade schedulers. These error bounds
suggest that the optimal packing is a reliable proxy for cluster
utilization in the following results.

Results. Figures 3 and 4 show the results, where utilization
is normalized to a 1x machine pooling factor and 1x VM sizes.
Taking the unmodified VM demands from the trace resulted
in no utilization gain from pooling of any size (flat blue line)
in both datasets.

To see how sensitive this result is and how much packing
flexibility there is, we inflate the sizes of VMs. For example,
for 8x we increase the core count and memory size of every
VM by a factor of 8. For the Google trace, we find that pooling
has at most 1% utilization improvement, even when VMs are
inflated up to 16x. Weighed against the additional costs and
complexity of pooling outlined earlier in the paper, this small

improvement renders pooling out of the question. In Figure 3,
pooling begins to have a benefit with a 32x inflation factor,
and even then, it is modest, less than 5%. VMs must be 64x
larger in order for there to be significant resource stranding at
a single server, which is what reduces stranding with pooling.

On the other hand, the Azure VMs (Figure 4) begin to see
utilization improve at around 8x VM sizes, suggesting that the
cloud VMs are larger than the internal Google VMs to begin
with, and that the pooling calculus may differ for internal
workloads versus public cloud workloads.

In general, if VMs can reach a certain size with respect to
physical machine size, pooling can help with the resulting
resource stranding. However, based on the analyzed traces,
most VMs are small and servers are large: while bin-packing
is an NP-hard problem, if the bins are large and almost all of
the objects are small, there is little leftover space in any bin.
As long as VM sizes remain small, pooling is untenable.

6 Discussion
Compute Express Link provides numerous improvements to
PCIe, notably lower latency and cache coherence. For com-
plex, latency-sensitive peripherals such as NICs and GPUs,
CXL will allow much faster and more fine-grained coordina-
tion between the CPU and these processors.

This paper examines another potential use of CXL, dis-
aggregation memory across servers through a shared CXL
memory pool. While there has been a lot of excitement and
interest in such an approach, there has been almost no experi-
mental data to verify its feasibility. Furthermore, analyses of
its potential benefits ignore many of the practical deployment
issues and costs.

Disaggregation in datacenter and cloud systems was first
proposed for hard disk drive storage, where seek times of
milliseconds outweigh any additional system or network la-
tency. Memory, however, is at the opposite of this spectrum.
Architectures move memory closer to compute because lo-
cality is key to performance. GPUs, TPUs, and IPUs all have
their own memory. For example, a 6 foot cable adds 12ns of
propagation delay in each direction, and at memory speeds
every such little increase matters.

In this paper, we described three reasons why CXL mem-
ory pools will not be useful in cloud and datacenter systems:
cost, software complexity, and a lack of utility. Each reason is
based on the best information we could find and is grounded
in computing today. Future advances or marketplace shifts
may invalidate our assumptions and change the calculus to
make CXL pools attractive; that they could play a role as
far memory RAMdisks, which an OS copies into local mem-
ory. We look forward to and encourage research on such a
future, but at the same time do not want to mistake hopeful
possibilities for technical reality.
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