
Computer Networks 54 (2010) 658–673
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Physically-based models of low-power wireless links using signal
power simulation q

Tal Rusak a,b,*, Philip Levis b

a Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
b Computer Systems Laboratory, Stanford University, Stanford, CA 94305, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 27 August 2009

Keywords:
Wireless link simulation
Low-power wireless networks
Sensor networks
Burstiness
Signal strength
1389-1286/$ - see front matter � 2010 Elsevier B.V
doi:10.1016/j.comnet.2009.08.014

q A preliminary version of this manuscript
MSWiM’08.

* Corresponding author. Present address: Room
353 Serra Mall, Stanford University, Stanford, CA 94

E-mail addresses: rusakt@stanford.edu (T. Rusak)
(P. Levis).
We propose deriving wireless simulation models from experimental traces of radio signal
strength. Because experimental traces have holes due to packet losses, we explore two
algorithms for filling the gaps in lossy experimental traces. Using completed traces, we
apply the CLOSEST-FIT PATTERN MATCHING (CPM) algorithm, originally designed for modeling exter-
nal interference, to model signal strength.

We compare the observed link behavior using our models with that of the experimental
packet trace. Our approach results in more accurate packet reception ratios (PRR) than cur-
rent simulation methods, reducing the absolute error in PRR by up to about 0.3 in the
experiments we present. We also find that using CPM for signal strength improves simu-
lation of packet burstiness, reducing the Kantorovich–Wasserstein (KW) distance of condi-
tional packet delivery functions (CPDFs) by a factor of about three for intermediate links.
Our model reduces the factor of error in the number of parent changes in the standard
TinyOS collection protocol (CTP) by an order of magnitude or more as compared to a real
signal power trace in two simple test scenarios. We show that our methods are robust to
the sampling frequency of the learning deployment and are thus generally applicable for
simulating arbitrary applications without a pre-determined packet transmission fre-
quency.

These improvements give low-power wireless network simulators a better capability to
capture real-world dynamics and edge conditions that protocol designers typically must
wait until deployment to detect.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Many low-power wireless network deployments have
observed significant differences between behavior in con-
trolled environments such as test labs or simulation and
behavior in the field. These differences can cause applica-
tions to fail at collecting the desired data [1]. Determining
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the cause of these failures is difficult due to the highly con-
strained nature of network hardware, including only a few
bits of output information and little memory to save per-
formance logs. The remote nature of many sensor network
deployments make the study of the operation of the net-
work and debugging protocols and applications even more
difficult.

Increasing simulation fidelity, so simulators can capture
edge cases and complexities encountered in real deploy-
ments, will reduce the gulf between testing and practice.
It will also allow network developers to use the resources
of a PC to debug and develop full scale applications. Creat-
ing such models will facilitate analytical studies regarding
the nature of such systems. Low-power wireless networks
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have proven difficult to simulate because of a large number
of factors that impact their operation and a limited theo-
retical understanding. In particular, the precise modeling
of the variation of noise and signal power when receiving
a packet in low-power wireless networks is an open
problem. A special challenge in creating these models is
that many low-power wireless networks share the radio
frequency (RF) environment, and especially the 2.4 GHz
frequency range, with 802.11 wireless networks, micro-
waves, cordless telephones, and many other interference
sources.

Wireless simulators have traditionally relied on analyt-
ical models for signal strength and noise. These models
allow developers to explore a huge space of possible con-
figurations and network designs and also enable a good
understanding of packet dynamics. Such simulations have
had success in modeling highly-complex wireless environ-
ments, for example, predicting the cell phone network’s
coverage of cities. For example, the WiSE tool [2]
developed in the mid-1990’s and several commercial tools
available today [3,4] model the signal power of wireless
networks in complex environments with relatively low
errors. Such systems use computer-based modeling tools
to express the geometry of the region being studied. How-
ever, these models are simplifications of the real-world.
When faced with the greater complexity of a real embed-
ded environment, protocols encounter unforeseen edge
cases and their performance suffers [5].

We take a different approach to modeling low-power
wireless networks. Rather than simulate an arbitrary
configuration of nodes based on analytical models, we
examine how to simulate a specific configuration based
on experimental traces. This empirical approach, which
we call physically-based simulation, has an additional
benefit – it allows us to validate our models by comparing
simulation results to real-world measurements. Unlike
purely analytical approaches, which are not grounded in a
real network and therefore cannot be validated, using mea-
surements from a deployment allows us to compare the
resulting simulated behavior with the observed behavior.

Using physical-layer measurements in the form of
variable frequency RSSI traces and 100 Hz or 1 kHz noise
plus interference traces, we use probabilistic models to
recreate behavior that is representative of what is observed
on the real network. Simply replaying traces is insufficient,
as it does not allow users to simulate experiments longer
than the traces, and can also lead to overfitting to the
particular trace used in the simulation [6].

Physically-based simulation has been applied success-
fully in our previous work to modeling noise and interfer-
ence [7] for the purpose of simulation. In particular, we
proposed the CLOSEST-FIT PATTERN MATCHING (CPM) algorithm
for modeling noise and interference based on traces from
deployed networks. In this paper, we propose extending
this approach to modeling signal strength variations.
CPM uses conditional probability distributions to model
trends in the data trace. Based on the past k values for
the variable (noise, signal strength, etc.), CPM samples
from the probability distribution of what the next value
will be. We present the algorithm in greater depth in
Section 2.4.
There are two research challenges in applying this tech-
nique to simulating signal strength. The first is biased sam-
pling. Unlike noise plus interference, which can be sampled
at any time, signal strength can only be sampled on suc-
cessfully received packets. This means that the signal
strength trace is only partially observable. Only using re-
ceived packet signal strengths skews the distribution and
may lead to different packet reception ratios than those
observed in reality. Therefore, an algorithm needs to gen-
erate estimates of missed signal strength measurements.

We propose two solutions to address biased sampling.
One algorithm, called AVERAGE VALUE (AV), simply assumes
all missed packets have the average observed signal power.
In the other algorithm, we fill a probability mass function
(PMF) of expected signal strengths based on the reception
probabilities of the signal strengths of observed packets.
We call this algorithm EXPECTED VALUE PMF (EVP). We find
that in our experiments, EVP leads to a lower maximum
packet reception ratio (PRR) error bound as compared to
AV. EVP bounds the absolute error in PRR at 0.22 as
compared to experiment, while AV bounds the same error
measure at 0.3.

The second challenge is phase and sampling precision.
For some physical layers, such as the one we study (IEEE
802.15.4), there is a very sharp 1.5 dB transition between
low and high packet reception ratios. The radio hardware,
however, can only produce readings at the precision of a
single dBm. When the radio reports the signal strength of
a received packet (RSSI, received signal strength indication),
this is the sum of the noise plus interference and the actual
signal strength. The sharpness of the SNR–PRR curve means
that the signal strength reading must be precise and thus
the relative phase of interference and signal is important.

To address the problem of phase and sampling preci-
sion, we explore whether assumptions of in phase, out of
phase, or neutral phase additive models lead to more accu-
rate simulation. We find that for each experiment we need
to individually evaluate which phase assumption to use,
and that choosing the correct assumption can lead to
reductions of error in absolute packet reception rate by
up to 0.3 in our experiments.

Another advantage of this model is that it allows net-
work designers to choose a particular algorithm and phase
assumption that best fits their deployment location. We
provide an overview and several examples of fitting mod-
els to experimental traces in Section 5.1.

In addition, we compare fixed-PRR links of the various
simulation methods to the Kantorovich–Wasserstein
(KW) distance [8] on conditional packet delivery functions
(CPDFs) [7]. CPDFs describe packet delivery probability
given x consecutive successes or failures. As each value is
equally important in a KW distance measure, CPDFs lend
more weight to the rare than the common case, and so
better represent the complexities of real-world networks
than simple measures such as l of a Gilbert–Elliot channel.
The proposed model leads to a substantial reduction in the
KW distance between CPDFs of bursts of receptions and
losses as compared to CPDFs generated using a real signal
power trace.

To verify the robustness of the methods to different
sampling rates in experiments, we consider a large number
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of experiments and evaluate the results using the same
methods. We show that these simulation techniques are
effective at different sampling rates and do not require a
learning deployment at the same rate that will be used in
the application network. Finally, we show that applying
our model leads to a significant reduction in the factor-
of-error in the number of parent changes in the standard
TinyOS collection layer (CTP) in a simple test scenario as
compared to the static signal power assumption that is
commonly used in simulating low-power wireless
networks.

The rest of this paper is organized as follows. In Section
2, we review related work about TOSSIM, a standard simu-
lator for wireless sensor networks, about modeling signal
strength, and about physically-based simulation. In Section
3, we present algorithms for the modeling of signal power
in low-power wireless networks. In Section 4, we present
our experimental work and provide an overview of the
traces used to validate the proposed methods. In Section
5, we compare simulation results to experimental traces
by using absolute PRR differences and the Kantorovich–
Wasserstein (KW) distance using the concept of CPDFs. In
Section 6, we consider varying the parameters of our mod-
el in terms of time measurement scales and perform an
additional, comprehensive evaluation of our models. In
Section 7, we show how the presented simulation model
can allow simulators to more accurately capture the
behavior of higher-level protocols. Finally, in Section 8
we provide concluding observations.
2. Background and related work

2.1. The TOSSIM Simulator

TOSSIM simulates TinyOS-based sensor network appli-
cations [9–11] using the IEEE 802.15.4 physical-layer. TOS-
SIM replaces several low-level hardware components with
software equivalents. Application code runs unmodified in
the simulator, enabling developers to test implementations
in addition to algorithms. TOSSIM has advanced wireless
network simulation features: it simulates packet capture,
implements acknowledgments, including false positive
acknowledgments, and has a robust noise model [7]. We
use TOSSIM as the framework in which we implement
and test our algorithms.
2.2. Signal power models for low-power wireless networks

Low-power wireless network simulators have taken
varying approaches to modeling signal power. Released
versions of TOSSIM, for example, assume signal power
magnitude jSj to be constant, and allow the user to input
a gain (attenuation) value for each link in the simulation.
Currently, gain is either manually input for each link or
modeled using a tool [12] which simulates overall network
structure, but not the temporal variations in individual
links in the network. Fig. 1 illustrates the noise plus inter-
ference and RSSI variations over typical, representative
experiments. There is a longer term variation in the signal
power of received packets, which is approximated in this
figure by RSSI ¼ jSþNj, where jNj is the noise plus inter-
ference magnitude. Since jSj � jNj for received packets,
however, it is unlikely that the variations illustrated in this
figure, taken from experimental traces, are a result of noise
variations alone. Thus, TOSSIM’s assumption that signal
power is constant is a simplification to reality.

Other models of low-power wireless networks have at-
tempted to apply the aforementioned analytical approach.
One such analytical model that has been investigated in
the context of low-power sensor networks is the combined
simplified path loss model and log-normal shadowing ran-
dom process [13]. On the dBm scale, the signal power S
is given by

S dBm ¼ Pt dBmþ K dB� 10klog10
d
d0
þWdBðl;rÞ; ð1Þ

where S is the desired signal power, Pt is the transmit
power, K is a unitless constant, k is the path loss exponent,
d

d0
is a physical parameter proportional to distance, and W is

a Gaussian random variable, where l is the mean and r is
the standard deviation. Bae and Kim [14] conducted an
investigation applying this model for use with the TI/Chip-
con CC2420, a radio commonly used in sensor network
deployments, including the experiments we performed,
and gave a set of parameters that apply to this radio and
to the 2.4 GHz frequency range. When we apply this mod-
el, we use the parameters given in Table I of that study
[14].
2.3. Physically-based simulation

This paper extends the physically-based radio link sim-
ulation algorithm introduced in our previous work [7]. The
equation that underlies this model is

SNR ¼ jSjjNj ; ð2Þ

where jSj is the magnitude of the signal power of a received
packet, jNj is the resultant magnitude of any environmen-
tal noise or disruption not caused by the network being
studied, and SNR is the signal-to-noise ratio [7]. On a log-
arithmic scale, expression (2) may be expressed as

SNRdB ¼ jSjdBm � jNjdBm: ð3Þ

This expression for SNR can be mapped to a packet recep-
tion rate using the function given in Fig. 2. The derivation
of this function assumes the probabilistic independence
of several random variables [12,15] and has been verified
experimentally. We maintain these assumptions for the
simplicity of analysis, and we see their relaxation as
important future work to pursue to make models such as
the one proposed here even more accurate.

The TOSSIM simulator implements this model with a
variable noise parameter: it models jNj using the CPM
algorithm [7], reviewed in the next section. We see from
Fig. 1 that modeling noise is desirable since there are sub-
stantial short term variations in noise values. As men-
tioned above, released versions of TOSSIM assume jSj to
be constant.



Fig. 1. This figure shows experimental variations in RSSI ((a) and (c)) and noise plus interference values ((b) and (d)) from two representative sensor
network deployments. We see that both of these parameters are not constant and do not vary consistently across different environments.
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Fig. 2. TI/Chipcon CC2420 SNR/PRR curve [10].
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2.4. The Closest-Fit Pattern Matching (CPM) Algorithm

The CPM algorithm uses an experimental trace to create
a conditional model of observed values [7]. First, an exper-
imental learning trace is collected at frequency f in the
environment to be simulated. In its model generation
phase, CPM scans the trace and computes a probability dis-
tribution of the next value v given k prior values in order.
To run CPM, a simulation replays the first k values from
the trace; then the algorithm uses the probability distribu-
tion constructed during model generation to sample the
next value. If the prior k values do not match a pattern ob-
served in the real network, then CPM samples from the
most common pattern.
If k is equal to the length of the trace, then CPM will
simply replay the trace. If k ¼ 0, then CPM takes indepen-
dent samples. Our previous work [7] found that k ¼ 20
leads to the best results when simulating noise plus
interference, and we use this value of k unless otherwise
noted.

3. Algorithms for modeling signal power

We propose to collect signal power traces over long
periods of time and then to use the CPM algorithm to
predict signal power. We consider two algorithms to fill
in lossy samples of signal power from experiments – the
EXPECTED VALUE PMF (EVP) and the AVERAGE SIGNAL POWER VALUE

(AV) algorithms.

3.1. Collecting signal power traces

Collecting signal power traces is more intricate than
collecting noise traces for several reasons. First, any signal
power value refers to a link between a pair of nodes; thus,
any experimental trace needs to involve both a sender and
a receiver. Noise, on the other hand, is local to an individ-
ual node in the network.

Furthermore, signal power is not known to the mote
directly. The best estimate of its magnitude is the
RSSI ¼ jSþ Nj upon packet reception. Due to the steepness
of the SNR–PRR curve (Fig. 2), RSSI must be corrected for
this noise error to obtain the correct signal power magni-
tude. This is not just a matter of subtracting the noise value
since the phases of waves must be considered.

In addition, while noise can be sampled in any environ-
ment, and there will always be a sample when one is
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requested, this is not the case for signal power. Recall that
signal power requires the communication between two
nodes; if the link fails and a packet is not delivered,
then there will be no RSSI or signal power value available.
Thus, the signal power trace needs to be post-processed
and filled-in for completeness and to avoid missing
samples.

We suggest two separate steps to account for these
challenges: (1) filling in missing signal power values into
the experimental trace, and (2) correcting for the phase dif-
ferences between noise and signal traces. Each of these
algorithms assumes that a trace of RSSI values has been
collected by measuring the received signal power from a
network of two motes. This is accomplished by a TinyOS
application that sends packets at the constant frequency f
from a designated sender mote, and records the RSSI value
at reception; we denote this RSSI trace (measured in units
of dBm) R. The algorithms also require that the noise plus
interference in the environment that we aim to simulate
has been characterized, such that the average noise N
(measured in units of dBm) over the period of the RSSI-col-
lection experiment is known or can be approximated well.
A TinyOS application similar to RSSISample [16] can be
used to measure average noise.

3.2. Phase differences

Furthermore, we need to determine the phase differ-
ences between noise and signal, which we denote p. In
principle, p could be anywhere in the continuous range be-
tween �1 and 1, since it is the phase difference between
the resultant noise vector and the signal power vector,
aggregated over the total time of the experiment or simu-
lation. However, as we show below, we can reduce the
continuous search space of possible phase differences
and derive satisfactory simulation results by making one
of three simple assumptions about p, where

p ¼
�1; Noise and signal are assumed in phase
0; No correction for phase difference
1; Noise and signal are assumed out of phase

8><
>: :

ð4Þ

An interesting and important question is how to select
the correct phase assumption for a given scenario. In
course of extensive experimentation, including many
experiments that are not explicitly presented in this pa-
per, we found that the out-of-phase assumption ðp ¼ 1Þ
is the most effective in the largest number of cases.
However, this difference may not be statistically signifi-
cant. It may be possible to determine p directly by using
a spectrum analyzer. Such analysis would need to ac-
count for all of the noise sources, their time variance,
and to aggregate p over the entire length of the experi-
ment. Additional work is needed to determine p in a
simple and direct way. We explore related problems in
separate work, suggesting a parsimonious understanding
of the wireless channel [17,18]. In this paper, we test all
three assumptions given above by setting the phase cor-
rection factor p when constructing the signal power trace
from the RSSI trace.
Algorithm 1 (EXPECTED VALUE PMF).

Data : Average noise N (in dBm), list of successful
reception times T# ½0; ‘�, RSSI trace
R : T! dBm value collected from experiment
of length ‘ at frequency f, and phase assumption
p

Result : A filled in signal power trace S : ½0; ‘� !
dBm value mapping for time duration ‘ at fre-
quency f
Initialize PMF P;

foreach t 2T do
r ¼ RðtÞ;
Find s ¼ 10log10 10

r
10 þ p� 10

N
10

� �
;

Add mapping ðt; roundðsÞÞ to S;
Add s to P with frequency 1

prrðs�NÞ � 1;
end
foreach ðt 2 ½0; ‘�Þ R T do

Add mapping ðt; sampleðPÞÞ to S;

return S;
3.3. THE EXPECTED VALUE PMF (EVP) algorithm

First we consider the EXPECTED VALUE PMF (EVP) algo-
rithm. Pseudocode is given in Algorithm 1. The algorithm
accepts as input the average noise in the environment to
be simulated N (in dBm), a set of successful reception
times T from an experiment conducted at frequency f,
an RSSI trace R which maps time values where the RSSI
is known to the corresponding RSSI values measured in
dBm, and a phase assumption p. Then, for each of the
known RSSI values, a signal power value is generated by
correcting the RSSI value for the noise error using the
expression

sðtÞ ðin dBmÞ ¼ 10log10 10
RðtÞ
10 þ p� 10

N
10

� �
: ð5Þ

The intuition is that if a signal and noise are in phase, then
the actual signal power is lower than the RSSI value
detected, so p ¼ �1. If the signal and noise are out of
phase, then the actual signal power is higher than the RSSI
value detected, so p ¼ þ1. Finally, if the phase differences
cancel each other out, then p ¼ 0 and sðtÞ ¼ RðtÞ. After it
is computed, sðtÞ is added to the signal power trace S at
time t.

The algorithm also adds each signal power sðtÞ com-
puted from the experimental trace to PMF P at a frequency
corresponding to the number of packets that are expected
to be lost, quantified by

Expected lost packets ¼ 1
prrðs� NÞ � 1 ð6Þ

where prrð�Þmaps a signal to noise ratio (SNR ¼ s� N on the
dB scale) to the corresponding PRR value, following the
curve illustrated in Fig. 2. This expression effectively
extrapolates the number of packets that should have been
received at this signal power value, based on the probability
of receiving this single packet. One is subtracted to account
for the packet that has just been received. This number is
stored as a float value in our algorithm, so it is possible
to have fractional amounts of expected missing packets.



Fig. 3. An example of the expected value PMF algorithm on an input, assuming an average noise of �90 dBm. This trace shows 6 of 11 packets were
received, with RSSI values of �82, �87, �85, �86, �82, and �81 dBm. The RSSI values of the five missed packets are not known, and this is indicated by
‘‘??”s in the figure. Extrapolating from expected PRRs of the RSSI values of the received packets, there should be 14.5, not 5 lost packets: for example, only 1
of 10 packets at �87 dBm should be received. Note that for simplicity, we use PRR values that are approximates to those given in Fig. 2 and that we round
the expected number of packets to one decimal point and omit trailing zeros.
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Finally, for every missing signal power value in S, i.e.,
for every time that a packet was lost in experiment, the
EVP algorithm samples the PMF of expected missing values
P, and these times are mapped to signal power values cor-
responding to the proportion that each integral signal
power value is found in the PMF generated from the exper-
imental trace.

The number of expected lost packets is greater than the
actual number of lost packets in the example of the EVP
algorithm shown in Fig. 3. This is also the case in the real
traces studied. We conjecture that this may be because of
the 1 dBm granularity of the RSSI values measured by the
CC2420 radio in our experiments. However, the full reason
for this difference and its causes and implications is a topic
of future work that we are interested in pursuing. As ex-
pected, this observation results in lower power values
being common in traces filled in using the EVP algorithm
since the very low delivery ratio of these values skew the
distribution.
3.4. The AVERAGE SIGNAL POWER VALUE (AV) algorithm

We also consider the AVERAGE SIGNAL POWER VALUE (AV) algo-
rithm. Pseudocode is given in Algorithm 2. This algorithm
accepts as input the average noise N (in dBm), a set of suc-
cessful reception times T from an experiment conducted
at frequency f, an RSSI trace R which maps time values
where the RSSI is known to RSSI values measured in
dBm, and a phase assumption p. Then, the signal power
trace is computed for these known times using expression
(5) and all known values are added to the signal power
trace S. The average signal power of the received packets,
P, is computed (in units of dBm) and rounded to an integer,
to conform to the output of the CC2420 radio for RSSI val-
ues. This average signal power has a sampling bias, as it
only considers received packets. Finally, the algorithm fills
in the signal power trace by inserting the average signal
power value for all time values that are missing from S.
Fig. 4 shows an example of the execution of the AV
algorithm.

Algorithm 2 (AVERAGE SIGNAL POWER VALUE).
Data : Average noise N (in dBm), list of successful
reception times T# ½0; ‘�, RSSI trace
R : T! dBm value collected from experiment
of length ‘ at frequency f, and phase assump-
tion p

Result : A filled in signal power trace S : ½0; ‘� !
dBm value mapping for time duration ‘ at fre-
quency f

for each t 2T do

r ¼ RðtÞ;
Find s ¼ 10log10 10

r
10 þ p� 10

N
10

� �
;

Add mapping ðt; sÞ to S;
end
Let P be the average value of power values in S

(in dBm), rounded to an integer;

for each ðt 2 ½0; ‘�Þ R T do
Add mapping ðt; PÞ to S;

return S;
3.5. Implementation and performance of signal power
correction algorithms

We implemented both algorithms as a Java preprocessor
that accepts text files of traces that are collected from a
TinyOS application we developed for this purpose. The
application outputs the signal power traces S to a text file
that is used as input to a modified version of the TOSSIM
simulator, which uses CPM (see Section 2.4) to predict sig-
nal power when a simulation is performed. Our preproces-
sor also automatically generates Python scripts for use with
TOSSIM for all three phase assumptions discussed above.
The preprocessing step needs to be run only once for an
arbitrary number of simulations of a certain wireless link.



Fig. 4. An example of the average signal power value algorithm. This trace shows 6 of 11 packets were received, with RSSI values of �82, �87, �85, �86,
�82, and �81 dBm. The RSSI values of the five missed packets are not known, and this is indicated by ‘‘??”s in the figure. In this algorithm, these missing
values are filled in with the average signal power value, rounded to an integer.
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We measured the running time of the preprocessing
code using the suggested algorithms on a laptop with a
2.6 GHz processor. This run generated signal power traces
and TOSSIM scripts for both directions of the link under the
three phase assumptions studied. The RSSI traces had over
80,000 samples before they were filled in. Times were
measured using Java’s System.currentTimeMillis()

function. The EVP algorithm ran in 11.529 s, while the AV
algorithm ran in 11.244 s.

To decide on the effectiveness of these simulation tech-
niques, we collected experimental noise and signal power
traces discussed in the next section.
4. Data collection methodology

In conducting this study, we noticed a lack of experi-
mental traces for signal power variations. Thus, we col-
lected our own experimental traces in order to validate
simulations using the proposed algorithms. We conducted
numerous experiments that have one sender and one re-
ceiver, placed at specific locations on the Cornell University
campus shown in Fig. 5. In addition, we conducted a high-
frequency experiment at a testbed in Gates Building at
Fig. 5. Map of experimental collection locations at Cornell for this
investigation; each pair is represented by an arrow. The link in Phillips
hall had two motes separated by one floor, and in all other experiments
the motes were located on the same floor. Base map from http://
www.parking.cornell.edu/pdf/Stu_combo_2006.pdf.
Stanford University, again using one sender and one
receiver.

We developed a TinyOS application that sends packets
at various frequencies f from the sender to the receiver.
This application does not implement a particular protocol
to guarantee packet delivery – there are no acknowledge-
ments and no retransmissions, for example. In fact, we
are interested in studying the reception patterns of packets
and the signal power of such received packets. We chose
f ¼ 4 Hz as a baseline collection frequency to investigate
long RSSI traces for the Cornell campus experiments. The
Gates Building experiment, used to investigate the influ-
ence of collection frequency on our algorithms, was col-
lected at f ¼ 100 Hz and then subsampled to simulate
collection at a variety of lower frequencies. The sender
mote sends packets at these rates; the receiver simply lis-
tens for packets and records the sequence number and the
RSSI of each received packet. For each experiment, at Cor-
nell we tested the link in both directions, i.e., first one mote
is the sender and the other mote is the receiver, and then
the sender and the receiver are switched for the purposes
of collecting another trace. We collected a trace of about
12 h (or more) for each pair of nodes at Cornell, and for
about three hours in the Gates Building experiment.

The nodes used were TelosB motes [19] with TI/Chipcon
CC2420 radios [20], the radio that TOSSIM models. The
Cornell campus experiments were conducted in Rhodes,
Upson, and Phillips Halls. These buildings are high traffic,
high use academic facilities around the clock and they have
a pervasive 802.11 abg wireless network. There are also
cordless phones, microwaves, and personal wireless access
points in use in both buildings. Gates Building has an
802.11 g wireless network, and there are microwaves and
other interference sources in use as well. Thus, in both
environments, there are many factors that can impact the
quality of the wireless connection between the nodes.
While both are academic environments, the building age,
composition, and location varies widely among the differ-
ent experimental traces used in this study.
5. Evaluation

We evaluate the proposed model on two levels. First,
we measure the error in packet reception rates by compar-
ing simulation traces to the corresponding experimental
traces. We show that with an appropriate choice of
assumptions about phase differences and the filling-in
algorithm between the signal and noise, we can achieve
predictive packet reception rate simulation. Then, we eval-

http://www.parking.cornell.edu/pdf/Stu_combo_2006.pdf
http://www.parking.cornell.edu/pdf/Stu_combo_2006.pdf
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Fig. 6. Absolute differences between the PRR of experiments and
simulations for various assumptions about phase using (a) the EVP
algorithm and (b) the AV algorithm for filling in signal power traces. In
both plots, the TOSSIM 2.0.2 value takes gain (signal power) to be the
average RSSI, without rounding.
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uate the correlation among packets and show that our
algorithms provide KW distances lower by a factor of about
three compared to the best alternative simulation methods
studied.

5.1. Comparing simulation and experiment PRRs

In this section, we compare a first-order parameter,
packet reception rate (PRR), between simulation and the
environment that we are trying to simulate. The different
algorithms proposed above have different levels of corre-
spondence to experiment with respect to PRR.

PRR is a very basic simulation parameter. It is possible
to get a perfect PRR simulation by simply accepting pack-
ets at a rate equal to the PRR that was derived from the
experiment. Unfortunately, such a simulation will not take
into account temporal variation of signal power or packet
reception correlation that is known to be found in low-
power wireless links [7,17,18,21]. Furthermore, in complex
networks it may be impossible to dictate the reception
rate, since such a simulation does not consider the interac-
tions between different pairs of nodes that may transmit
concurrently.

PRR is a very difficult parameter for general simulators to
get right. For example, we ran simulations of our experi-
ments with the analytical model discussed in Section 2.2
and got PRRs that were very different from those that we ob-
served experimentally. In most cases, these results were so
far off that they do not even provide a basis for comparison.

At the same time, correctly modeling the packet recep-
tion rate is extremely important in wireless networks,
especially for those links in the intermediate range. It is vi-
tal for protocol designers to have an idea of the proportion
of packets that are received as compared to those that are
lost in order to correctly account for these losses, either in
information, time, or both, when programming the net-
work and designing applications. Physically-based simula-
tion introduced in TOSSIM 2.0.1 and 2.0.2 has greatly
increased the ability of the simulator to correctly capture
packet reception rates. For example, Metcalf [22] shows
that TOSSIM 2.0.2 produces largely correct results in terms
of PRR for good and bad links. In that work, TOSSIM’s gain
value is set to the average RSSI of the link, which approxi-
mates signal power. However, examining the figures in
Chapter 4 of [22], we see that PRR differences between
experiment and simulation values are greater in interme-
diate links. Although there are relatively few intermediate
links in that study, their PRR is not predicted precisely in
many cases for such link qualities.

The model that we propose improves upon the predic-
tion of PRR for the following reasons. First, it considers
the variations in signal power which may account for
PRR variations. There are two algorithms proposed for fill-
ing-in experimentally determined signal power traces, and
due to varying environmental conditions one or the other
may be more appropriate. In addition, our model corrects
for the phase differences between signal and noise waves
for each of the links when converting RSSI to signal power.
This correction needs to be tuned to the environment, and
it can cause major differences in the overall PRR of a given
link.
Note that in any physically-based simulation model, it
is almost always possible to get an exact PRR by modifying
the signal power with a certain coefficient or an additive
value. This is, essentially, a brute-force method of search-
ing for the appropriate phase correction factor p. Our pro-
posed method shows that using a signal power trace with
just three assumptions about phase, it is usually possible to
achieve nearly the same result.

In Fig. 6, we compare the absolute differences between
experimental and simulation PRRs of the various algo-
rithms that we propose in this work under different
assumptions about phase. We also perform the same com-
parison to the corresponding experiments as simulated by
TOSSIM 2.0.2. The TOSSIM simulator assumes that signal
power is constant, and we input the average RSSI value
of the corresponding experimental trace into TOSSIM. This
is a common assumption; for example, Metcalf used this
approximation as the gain parameter in TOSSIM in the
aforementioned study [22]. In each case, noise plus inter-
ference is modeled by CPM using a noise trace collected
in the experimental environment without sending packets.

In the present experimental study, we noted similar re-
sults – the bad links and the good links perform sufficiently
well in TOSSIM 2.0.2. As we can see in Fig. 6, however, TOS-
SIM does not give satisfying results for intermediate links
and gives a somewhat arbitrary PRR error given a consis-
tently calculated gain value.
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By correctly tuning the choice of assumptions it is
possible to effectively simulate a wireless link using the
suggested technique. Given the appropriate phase assump-
tion, the EVP algorithm approximates PRR to within an
absolute difference of 0.22 in the worse case (less than
0.1 in all but one case), while the AV algorithm approxi-
mates the PRR value to within 0.3 (less than 0.1 in all but
one case).
Fig. 7. Absolute differences between the PRR of experiments and
simulations for a single experiment with a PRR of about 0.6, using the
CPM method to simulate environmental interference plus noise and
various strategies for modeling signal power.

s

Fig. 8. CPDFs for PRR = 0.59 link. The negative horizontal axis plots consecutive
receptions. We note that the real signal power plot (a) is generally correlated in x,
and that the trace simulated with CPM (b) also follows such a correlation. Th
shadowing simulation CPDF (d) show no apparent correlation. Values with no b
Conducting an analysis similar to Fig. 6 allows network
designers to fit experimental data from their deployment
location to one of the algorithms proposed. Thus, it is pos-
sible to use this method to choose the best simulation
technique for a given wireless link.

In Fig. 7, we analyze a particular experiment with a
packet reception rate of 0.6. We then plot the error in sim-
ulation using real signal power, the CPM model with the
out of phase assumption and the EVP filling-in algorithm,
and the PRR with a constant, average signal power. First,
this figure provides validation for our physically-based
simulation model, as the error using real signal power is
0.1. While the error in the constant signal power assump-
tion is 0.5 (used currently in TOSSIM), the error using the
proposed algorithm is 0.3, an improvement that may be
important in some applications.
5.2. KW distances of fixed-PRR simulations

Not only is our approach effective at more correctly
modeling experimental PRRs in simulation, it can also
model packet reception correlation effectively. Such corre-
lations were shown to have an effect on higher-order
protocols [7] and we provide additional evidence of this
in Section 7. Clearly, the overall PRR of a long-term exper-
iment is not the only factor that has to be considered for
correct simulation. We also need the ability to appropri-
packet failures, while the positive horizontal axis plots consecutive packet
plotted on the horizontal axis, with a sharp increasing trend as x increases,
e constant signal CPDF (c) and the combined path loss and log-normal
ar indicate that no data was collected for this value, not a PRR of 0.



Combined Path 
Loss and

Fig. 10. The KW distance comparing CPDFs of the various signal power
modeling algorithms to CPDFs from a real signal power trace. The KW
distance of the simulation using the CPM algorithm is substantially lower
than the KW distances corresponding to other simulation techniques.
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ately account for temporal variations such as burstiness in
packet reception that are of fundamental importance in
designing effective protocols.

To investigate the impact of applying our model for sig-
nal power on packet reception correlation, we apply a con-
stant noise so that signal power is the only factor varied.
Then, we change the noise value for the various simulation
models such that the packet reception rates are essentially
the same. We consider the following several signal power
modeling algorithms in this fashion. Real signal power
traces are from actual experiments and are corrected and
filled-in using the algorithms given above. CPM signal
power traces are generated by inputting the real power
traces into the CPM algorithm, keeping a history of
k ¼ 20, and generating a simulation trace. Constant signal
power traces assume that signal power is constant and
pre-determined. Combined path loss and log-normal
shadowing signal traces use the analytical expression (1)
suggested in Section 2.2 to model signal power.

For each of these simulations, we build a conditional
probability plot of packet reception based on the condition

XðxÞ¼
jxj sequential packet losses; x<0
x successful sequential receptions; x>0

�
; ð7Þ

following an idea first introduced in our previous work [7].
Such a distribution has been called a CPDF. CPDFs investi-
Fig. 9. CPDFs for PRR = 0.83 link. The negative horizontal axis plots consecutive p
receptions. We note that the real signal power plot (a) is generally correlated
increases, and that the trace simulated with CPM (b) also follows such a correlati
combined path loss and log-normal shadowing simulation CPDF (d) appears to
indicate that no data was collected for this value, not a PRR of 0.
gate trends in packet reception burstiness [17,18,21] on
the time-scale of one packet only.

In Figs. 8 and Figs. 9, we present CPDFs of two interme-
diate links that we investigated. The experiment from
which this link was collected received about 0.59 of the
packets, and varying the constant noise value led to the
two different PRRs for the links in the two figures. For
the purpose of this analysis, we used the EVP algorithm,
which provides the tightest maximum error bound in
PRR over many experiments. In addition, we use the out
of phase assumption, which provides a PRR close to the
acket failures, while the positive horizontal axis plots consecutive packet
in x, plotted on the horizontal axis, with a gently increasing trend as x
on. The constant signal CPDF (c) shows no apparent correlation, while the
have a slightly decreasing PRR value as x increases. Values with no bar
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experimentally discovered PRR using the real experimental
noise. Note that the CPDF corresponding to the CPM algo-
rithm shows a more similar correlation to the real signal
CPDF than any other simulation method. In Fig. 8a, we note
that there is an overall sharp increase in PRR as x (repre-
sented on the horizontal axis of the CPDFs and defined in
expression (7)) increases. The CPDF corresponding to the
CPM model (Fig. 8b) is the only other that appears to show
any such increase. On the other hand, the CPDFs of con-
stant and combined path loss and log-normal shadowing
signal simulations (Figs. 8c and d) appear to present little
correlation. Similarly, in Fig. 9a, we see a more gentle in-
crease in PRR as x increases. Again, the CPM signal CPDF
(Fig. 9b) is the only simulation model that captures this in-
crease effectively. The constant signal CPDF (Fig. 9c) shows
no apparent correlation and the CPDF generated from the
combined path loss and log-normal shadowing model
(Fig. 9d) actually shows a slightly decreasing PRR as x in-
creases. Recall that CPDFs are generated from a probabilis-
tic simulation, so some outliers in the overall trends may
occur.

To quantify these observations, we measure the Kant-
orovich–Wasserstein (KW) distance [8] between the over-
lapping portions of CPDFs of real signal power simulations
and CPDFs of the simulation techniques discussed above.
The KW distance computes the distance between probabil-
ity distributions in a manner that places more emphasis on
the rare rather than the common situation. In Fig. 10, we
show the results of this calculation. The code used to com-
pute the KW distance uses an equivalent metric known as
Earth Mover’s distance [23]. As expected, the KW distance
between the CPM simulation CPDF and the real signal
power CPDF is much lower than the KW distance observed
when comparing the real signal power CPDF to the CPDF
corresponding to any other simulation model.

In particular, the CPM algorithm improves the KW dis-
tance of the intermediate links studied by a factor of about
three. This shows that applying CPM to the signal power
traces output from the algorithms suggested in Section 3
Fig. 11. PRRs of individual partitions of the Gates Building experiment
used for evaluation at various time-scales, each marked with a box. Each
of these partitions was 100 s in length, and all 21 partitions were used to
evaluate the proposed simulation method. This trace was chosen due to
the wide variety of packet reception rates represented in the individual
partitions, ranging from 0.06 to 0.98 PRR. This figure is drawn with
respect to the real temporal variation of this link.
is effective at modeling the temporal correlation of pack-
ets. At the same time, the global behavior of the link is sim-
ilar to the behavior (i.e., the PRR) of the corresponding
experimental link. Thus, applying our model leads to a
radio link simulation that is quite similar to the behavior
of the real link being modeled, both in terms of packet
reception correlation and in terms of packet reception
rates.
6. Varying model parameters: time-scale
considerations

6.1. Observations and methodology

Wireless links tend to be bursty in reception and at the
physical-layer [7,17,18,21,24]. Here we study the impact of
burstiness on the proposed models by varying model
parameters to various time-scales. Our proposed algo-
rithms consider time-scales in three model parameters:
(1) the length of the underlying trace ‘, (2) the value of k,
the history parameter in the CPM algorithm, and (3) the
collection frequency of the underlying signal power trace f.
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Fig. 12. PRR error (absolute value of the difference between experimental
PRR and simulation PRR) at different sampling frequencies and with
different phase assumptions.
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To study the impact of burstiness on the underlying
wireless channel, we use the high-frequency Gates Build-
ing trace. This trace includes a large number of packets
collected at a 100 Hz frequency. To vary f, we subsample
partitions of the Gates Building trace at a set interval. To
avoid biasing the sample as much as possible, we hold both
the value of ‘� 1

f and the value of k� 1
f constant, using the

baseline ‘� 1
f ¼ 100;000 and k� 1

f ¼ 5000, corresponding
to the values of k and f introduced in the previous section
for evaluation. This allows us to study the impact of burs-
tiness on the underlying models proposed in this paper.
We then consider the error in packet reception rate and
the KW distance between the original experimental trace
and the corresponding simulation. Note that only the trace
used for modeling is subsampled, while the trace used to
evaluate the results is the original experimental trace at
the full 100 Hz frequency. This analysis allows us to study
the underlying effects of burstiness on our method for
simulating wireless links.

We evaluate the various time-scales at f ¼ 100; 50;
25; 12:5; 6:25; and 3:125 Hz packet sampling frequency.
The corresponding periods, i.e., the time between succes-
In Phase
No Correction
Out of Phase

In Phase
No Correction
Out of Phase

In Phase
No Correction
Out of Phase

In Phase
No Correction
Out of Phase

Fig. 13. KW distances between experimental and simulation traces, at
different sampling frequencies and with different phase assumptions. No
KW distance was calculated in one of the scenarios due to no packets
being received in the simulation trace marked with ‘‘No Data”.
sive packet transmissions (used in Figs. 12 and 13), are
1
f ¼ 10; 20; 40; 80; 160; and 320 ms, respectively. To
avoid overfitting, we ran simulations at the full frequency
of 100 Hz. We evaluated a total of 21 partitions (sections)
of the Gates Building experiment using these methods.
We chose this trace and these partitions because of the
wide variety of packet reception rates represented in these
partitions; see Fig. 11. These partitions were simulated
using the EVP algorithm with each of the three phase
assumptions proposed.
6.2. Simulating signal power with traces at various time-
scales

The simulation methods suggested in this paper are
effective regardless of the experimental collection fre-
quency at the initial deployment used for collecting signal
power traces. Since the model is robust to changes in pack-
et frequency, this means that the initial learning phase
does not need to be at the precise frequency used by the
application network and that the learning phase does not
need to be repeated if the frequency of sending packets
varies with differing applications of the same wireless link.
This observation greatly increases the applicability of our
model for use in the simulation of arbitrary, multipurpose
low-power wireless networks.
Fig. 15. Four-node topology, where three nodes are packet sources and
the fourth is the sink. Packets are routed from the sources to the sink, as
indicated by the arrows. These direct paths are connected using the Gates
Building wireless link considered above. In addition to the direct paths,
the sources are also connected by the Gates Building wireless link, as
indicated by the dotted lines.

Fig. 14. Four-node topology, where one node is the packet source and the
remaining three are the sinks. Packets are routed from the source to the
sinks, as indicated by the arrows. These direct paths are connected using
the Gates Building wireless link considered above. There are no other
wireless links available for communication in this simulation.
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We use the same evaluation techniques as in Section
5 to verify the effectiveness of this simulation technique
– absolute difference between PRR of experiment and
simulation (PRR error) and the KW distance between
CPDFs of our simulation model and real signal power
traces.

Fig. 12 shows the absolute difference in packet recep-
tion ratio between experiment and simulation (PRR error)
for several representative experiments. Similarly, Fig. 13
shows the KW distances between the overlapping portions
of CPDFs of real signal power simulation and those gener-
ated using the suggested simulation model. Both figures
show examples of various link qualities encountered in
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Fig. 16. A probability mass function (PMF) of the number of parent changes usin
topology. Note the differences in scale on the axes of each plot; the effects of b
low-power wireless network deployments out of the 21
partitions used in this evaluation. For all simulations
tested, at least one of the phase assumptions and two
time-scales led to a PRR error of at most 0.11. At least four
time-scales led to this bound in all but one of the 21 parti-
tions examined. Among all time-scales tested and all parti-
tions, 81% of the experiments tested led to a PRR error of at
most 0.11. The KW distance was below 0.15 for 69% of the
links tested. The maximum KW distance for any experi-
mental partition with an optimal phase assumption was
0.23. Such high distances may be the result of a CPDF with
few entries that was observed in some of these experi-
ments. However, for many of these experiments the KW
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g the CPM, constant, and real signal power models for the first simulation
urstiness on parent changes are apparent.
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distance was as low as 0.01, indicating that burstiness is
captured at the time-scale of an individual packet by this
simulation model.

7. Effects on the simulation of higher-level protocols

Low-power wireless networks can benefit substantially
from the proposed model in practice due to pervasive burs-
tiness. Unlike models that assume link quality to be inde-
pendent in time, our model takes time dependence into
account and can thus lead to more accurate simulation of
the dynamics of an application’s behavior. As a result, this
simulation model can more correctly capture the behavior
of higher-level protocols.
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Fig. 17. A probability mass function (PMF) of the number of parent changes
simulation topology (Fig. 15). Note the differences in scale on the axes of each p
To demonstrate this, we conduct two simulations of
distinct four-node topologies. The metric of evaluation is
the number of parent changes in the standard TinyOS 2.0
collection layer, CTP [25]. CTP builds trees for routing data
from source nodes to sink nodes, which act as roots of the
collection trees. When a parent change happens, routing
destination of a particular node (i.e., the node’s parent in
the collection tree) changes to a different node. In the re-
sults that follow, we consider the initial parent assignment
for each source and any subsequent changes to the sources’
parents according to the protocol as a parent change. For
each simulation, we illustrate a probability mass function
over the number of parent changes in CTP using several
strategies for modeling signal power.
 

rent Changes
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using the CPM, constant, and real signal power models for the second
lot; the effects of burstiness on parent changes are apparent.
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In the first simulation, we consider a topology of one
source and three sinks. In this simple scenario, the source
is connected to all the sinks using a model of the Gates
Building wireless link considered above; this topology is
shown in Fig. 14. However, the sinks are not connected
and cannot hear each other. We model noise using the
CPM algorithm [7] and a local noise trace. For signal
power, we take the constant signal power model (the
mean signal power), the CPM model at f ¼ 100 Hz (a
period of 10 ms) with the out of phase assumption and
the EVP filling-in algorithm, and the real signal power
for comparison. The source sends 100,000 packets as fast
as possible achieved by calling send() in sendDone()

in the TinyOS program.
For the second simulation, we also consider a topology

of four nodes. In this case, there are three sources and
one sink. Each node is connected to all of the others
using a simulation of the Gates Building trace discussed
in the previous section; this topology is shown in
Fig. 15. As before, we model noise using the CPM algo-
rithm and a local noise trace, and we use the same mod-
els for signal power described in the first simulation.
Over this network, we send 100,000 packets from each
source to the sink node as fast as possible, for a total of
300,000 packets. Contrasting the two simulations studied,
we see that this second simulation allows packets to
route through siblings and also sends more packets while
fixing the sink node.

The results of both simulations clearly show that burs-
tiness impacts the behavior of the higher-level protocol.
The PMFs for each signal power model are given in
Fig. 16 for the first simulation and Fig. 17 for the second
simulation. For the first simulation topology (Fig. 14), the
median number of parent changes is 60 for the real signal
power model. For the constant signal power, the median
number of parent changes is only 1 (the initial assign-
ment of the parent), while using CPM signal power, the
median number is 168. Thus, the CPM model overesti-
mates the number of parent changes by a factor of about
2.8 while the constant signal power model underesti-
mates the number of parent changes by a factor of 60,
considering only the initial parent assignment in 76% of
the cases. For the second simulation (Fig. 15), the median
number of parent changes for the real signal power is
816 parent changes over the course of the simulation,
while for the constant signal power it is 6 (of which three
are initial assignments for the three sources) and for CPM
signal power it is 2070. While the CPM model overesti-
mates the number of parent changes by a factor of about
2.5, this is a significant improvement over the factor-
of-136 underestimation error in the constant signal
power model.

These improvements are especially significant when we
consider that it is better for a simulator to be pessimistic
than optimistic. Optimistic simulators can give protocol
developers false confidence and thus lead to protocols that
fail to work in practice. On the other hand, pessimistic sim-
ulators encourage the development of more robust proto-
cols that work well in practice since conditions are better
than those expected in the simulation phase of the proto-
col’s development.
8. Conclusions

This paper presents an improvement to low-power
wireless simulation by suggesting a way to model the sig-
nal power of wireless links. In particular, we suggest two
algorithms to fill in for signal traces that are inherently
missing from experiment. We make three assumptions
about phase. By examining the PRR of links in simulation
and experiment, we note that choosing correct parameters
in the suggested model can lead to very low PRR error as
compared to the experimental trace. Using the KW dis-
tance, we show that our simulation technique preserves
the packet reception correlation as compared to a real sig-
nal power simulation. In addition, we study the time-scale
characteristics of this simulation model. Our results indi-
cate that the model is effective regardless of time-scale
at which the initial learning experiment was collected,
ensuring a greater level of freedom of users of these mod-
els in real simulation environments. Finally, we show that
the proposed algorithms lead to a more accurate simula-
tion of higher-level protocols.

The algorithms presented in this paper, along with the
CPM algorithm that we suggested in previous work, can
be used to create a high-fidelity simulation of low-power
wireless links. Such accurate models and simulations can
help protocol and application developers learn about the
effectiveness of their algorithms and implementations by
collecting traces of signal power and noise from the in-
tended deployment environment.
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