CESEL: Securing a Mote for 20 Years

Kevin Kiningham, Mark Horowitz, Philip Levis, and Dan Boneh
Stanford University

Abstract

Embedded wireless sensors, once deployed, may remain
in active use for decades. At the same time, as motes come
to dominate both the number of hosts and data traffic of the
Internet, their security will become fundamental to general
Internet security. This paper argues that the next generation
of embedded networked sensor devices (“motes”) should
consider this tension in their basic design and be designed
to remain secure for 20 years in a rapidly changing and
evolving security and cryptographic landscape.

The key insight in this paper is that the economics
of modern system-on-a-chip (SoC) designs provides ample
space for hardware accelerators and cryptographic engines.
A next generation mote can therefore include many such
co-processors and features at almost no production cost. The
paper describes an initial design for what hardware security
support such a device should have, focusing on five hardware
primitives: an atomic, unique counter, a random number
generator based on physical entropy, additional instructions
to accelerate symmetric ciphers, an elliptic curve accelerator,
and support for modular polynomial multiplication used in
post-quantum cryptographic signing algorithms. We call this
architecture CESEL.

Categories and Subject Descriptors

C3 [Computer Systems Organization]:
Special-Purpose and Application-Based = Systems—
Real-time and embedded systems

General Terms
Hardware Acceleration, Low Power Cryptography

Keywords
Flexible Hardware, Internet of Things, Long Term
Security

1 Introduction

Computer and network security has seen many
transformations in the past 20 years. In 1996, SSL,
used in HTTPS (secure HTTP) was only beginning to
be defined: it was vulnerable to many attacks and is
considered insecure today. Telnet was still a common login
option on shared machines. NIST hadn’t yet announced
it was seeking a successor to the DES ciphersuite: AES,
the standard cipher relied on today, wasn’t standardized
until 2000. Since 1996, we have seen trojan horses,
worms, viruses, DNS cache poisoning, cross-site-scripting,
phishing, botnets, ransomware, advanced persistent threats,
and state-sponsored cyberattacks.

At the same time, we have seen the growth of embedded
systems and sensor networks[3]. Recent technological shifts
in wireless protocol support and microcontrollers are making
it possible to build long lived personal body monitors, smart
homes, smart cars, and smart cities. These embedded
devices, once deployed, may remain deployed for many
years. A smart lock, for example, can’t be changed every
year, nor can a smart window or a smart medical implant.
Smart, embedded sensing devices, once deployed, will often
last as long as 20 years. These devices, once connected,
present a potential security vulnerability. A smart lock can be
unlocked, a smart car could cause a collision or kidnapping,
a smart medical implant could kill you. All have tremendous
security implications.

We argue that the next generation of motes must address
the fact that they will need to remain secure over their entire
lifetime. We use 20 years as a rule of thumb for what
“entire lifetime” means; while many appliances, cars, and
other devices will be retired well before 20 years, some
will be held onto for a very long time. Sensor network
conferences such as EWSN and SenSys are 12-13 years
old, and papers published in 2015 use hardware developed
in 2003[15][12]. If even a small research community uses
decade-old hardware, it is not far fetched to think that
consumers will hold onto it for 20 years.

This paper identifies five primitives that would greatly
increase the chances that a device can remain secure for 20
years and describes a system architecture that includes them,
named CESEL. These five primitives are:

e an atomic, non-volatile counter to generate unique
nonces,

e arandom number generator with entropy guarantees,
e instructions to accelerate symmetric block ciphers,

e a co-processor supporting elliptic curve point
operations, and

e a co-processor supporting modular polynomial
arithmetic.

Section 2 motivates the need for 20 year security.
Section 3 describes five key requirements the next generation
of motes should have. Section 4 proposes several extensions
to existing hardware that would enable a device to support
ciphers and remain secure for the next 20 years. Section 5
concludes.

2 Securing for 20 Years

As the number of wireless sensors grow, it becomes
increasingly difficult to physically upgrade or replace each
sensor. Sensors can be placed in physically hard to reach
places like the human body or remote locations. In networks
with thousands or millions of sensors, it becomes impractical
to replace each sensor’s hardware without a massive amount
of effort. Because of this, it is likely that sensors designed
today will need to be secured and usable for many years or
decades to come.

However, securing communication between sensor nodes
present a significant engineering challenge when designing
sensors to last multiple decades. Several cryptosystems
have went from recommended best practice to completely
insecure in less than 20 years (see Table 1). In
addition, the most common public-key algorithms have
known weaknesses to quantum computers, which may be
widely available in as little as a decade[6]. Since current
cryptographic methods can become outdated and insecure,
the long term security of sensor communication will rely on
its ability to adapt to future ciphers and crypto.

While there is strong evidence on the mathematical basis
of future ciphers and cryptosystems, the exact form they
will take is still unknown. For example, new ciphers
are designed and proposed quite often, but many rely
on basic structures and primitives like feistel-networks
or add-rotate-xor (ARX). Therefore, rather than define a
particular algorithm, a next generation mote should design its
cryptographic accelerators to be programmable and flexible.

Table 1. Lifetimes of common cryptographic algorithms

Algorithm Release Insecure Lifetime
RC2[13] 1996 1997 1 year
RC4[4] 1994 2013 19 years
Symmetric Ciphers DES[16] 1979 1994 16 years
3DES[4] 1998 2015 17 years
AES 1998 - >17 years
Camellia 2000 - >15years
MD5[17] 1992 2004 12 years
Hash Functions SHA-1[17] 1995 2004 9 years
SHA-256 2000 - >15years
However, many wireless sensors have limited
computational and memory resources and strong

cryptography is often too expensive for embedded
systems to implement in software. As a result, many
manufactures have added hardware accelerators to

reduce the power used during encryption and decryption.
However, these accelerators typically target a single
cryptographic algorithm (most commonly AES), and cannot
be used for newer cryptographic standards. Additionally,
cryptographic operations that are not accelerated (such as
public-key cryptography) end up not being used, leaving
communication insecure. CESEL adds flexible, hardware
based, cryptographic accelerators, allowing for fast and
secure cryptography.

Including these cryptographic accelerators into next
generation mote SoCs would also have minimal additional
cost. While they would increase design and testing costs,
once in silicon their costs would be minimal. In modern
SoCs, the cost of enough silicon for millions of gates is tiny,
so the incremental cost of adding a few hundred thousand
more is very small; the Atmel SAM4L has enough area for
tens of millions of gates[20, pp.-3], and costs just $3.40 on
Digi-Key. We argue this fractional increase in cost is well
worth cryptographically protecting against the future.

Table 2. State-of-the-art mote microcontrollers
Microcontroller Flash SRAM Core Speed Package Hw. AES

NRF51822 256 KB 16 KB 16 MHz 6x6 mm YES
QN902X 128 KB 64 KB 32MHz 6x6 mm YES
CC2538 512KB 16 KB 32MHz 8x8 mm YES
STM32L0x1 32 KB 8 KB 32MHz 7x7 mm YES
MKW40Z 160 KB 20 KB 48 MHz 7x7 mm YES

3 Security Requirements

CESEL’s design focuses on what cryptographic
primitives and mechanisms a mote should have. The
design assumes that a mote’s software and hardware are
secure and that application code can trust its own storage
and code. CESEL therefore does not consider attacks such
as physical compromise or power analysis; these relate to
the physical construction of the SoC, and in this study we
constrain ourselves to an architectural design. Similarly,
the design does not consider software security threats, such
as buffer overflows or resource exhaustion: these are best
handled by an operating system and programming language.

Today, mote security is typically bootstrapped by
installing a shared private key on every mote in a
network[23]. This key provides the necessary secret to
provide link-layer secrecy, integrity, and authentication. This
approach is tolerable for stovepipe designs and single-vendor
networks, but as applications become richer, longer-lived,
and more complex, we assume that a more dynamic and
powerful authentication system will sometimes be needed:
certificates and signatures. Certificates and signatures would
allow mote networks to dynamically authenticate nodes
without having to share a private key. For example, suppose
that a smart door lock wants to authenticate with a home
network and establish credentials to be able to trigger the
alarm system. The lock first needs to authenticate the alarm
system, to protect against spoofing attacks: it needs to verify
a signature from the alarm system as well as the system’s
certificate chain. Requiring that the lock know a shared
key that is shared across many product lines, in contrast,
is vulnerable to anyone learning what this shared key is: a
single leaked source tree, or a single compromised device,

would open the system to attack.

We therefore take a long-term view of what cryptographic
primitives motes may need to use in the future. They will
not only need to support symmetric ciphers that may evolve
and change, but also public key cryptosystems. Furthermore,
there are lower-level primitives, such as nonces and random
numbers, that many protocols depend on. Taking a long-term
view, we argue that next generation motes should include five
architectural building blocks:

e an atomic, non-volatile counter to generate unique
nonces,

e arandom number generator with entropy guarantees,
e instructions to accelerate symmetric block ciphers,

e a co-processor supporting elliptic curve point
operations, and

e a co-processor supporting modular polynomial
arithmetic, in case quantum computers become a
reality.

3.1 Random Number and Nonce Generation

Random number generation is a key piece of modern
cryptography and security[9]. A fast, secure source
for random numbers is used in key generation, securing
networking protocols, and even high level application
security like ASLR. Misuse of random numbers has lead to
a large number of security bugs[9].

In embedded systems, it is particularly challenging to find
secure sources of entropy, and the sources that are available
are often of low quality, or can be easily compromised.
For example, many embedded systems use external sources,
like ADC readings, or difficult to guess timing information,
like the current cycle count. However, if an attacker gains
physical control of a device they can force any external
source to take on whatever value they like. Additionally,
when a device first boots there is a limited source of timing
information[2], which means applications must choose
between waiting for enough entropy to be gathered or using a
low quality entropy source. CESEL eliminates this problem
by adding a dedicated random number generator based on
a physical process like thermal noise, allowing for fast and
secure random number generation.

Additionally, unique nonce generation is another crucial
primitive needed for many cryptographic algorithms and
networking protocols. For example, nonces are required
in CBC-mode for block ciphers to ensure that identical
plaintexts are not encrypted to the same ciphertext. If a
nonce is reused, information is leaked about the plaintext to
an attacker, which violates ciphertext indistinguishably. This
exact method was used to decrypt TLS traffic in the BEAST
attack[1] as well as break the 802.11 encryption standard,
WEPI[7].

Unfortunately, it can be quite difficult to securely generate
unique nonces. Applications must be sure to prevent
reuse even in the case of power failure or software bugs.
However, ensuring each nonce is unique can be done easily
in hardware. For this reason, CESEL includes a dedicated
nonce generator that can be used regardless of power or

software failures.

3.2 Symmetric Ciphers

Since the connection between sensor nodes is untrusted,
any data sent between nodes may be intercepted by
an attacker. An attacker may then inject, modify, or
delete any packets they desire. This means that sensitive
communications, like sensor readings or cryptographic keys,
must be kept confidential and all packets must be checked
for integrity and authenticity.

In CESEL, this requirement is met by accelerating
authenticated symmetric cyphers. Symmetric ciphers
encrypt the data with a shared secret key, which prevents
an attacker from reading the data. For authentication, block
ciphers can be run in a mode of operation that allows for data
authentication. CESEL accelerates both the block ciphers
and common modes of operation, allowing for efficient
confidentiality, authenticity, and integrity over an untrusted
connection.

3.3 Public Key Cryptography

Public-key cryptography can also be used to guarantee
data authenticity and integrity. The sender produces an
unforgeable signature over the data using their private key.
The recipient can then verify the sender’s signature using the
sender’s public key. Note that this method does not rely on
the recipient knowing the sender’s private key. This prevents
a malicious recipient from forging packets on behalf of the
original sender.

For each of data confidentiality, authentication, and
integrity, we rely on the fact that each sensor is able to
generate and store a cryptographic key that it can use to
communicate with other devices. This may happen when a
sensor node is added to a new network and needs to transmit
data to a device it hasn’t seen before. A key agreement
protocol allows two devices that have not communicated
before to derive a common key over an untrusted link.

Unlike confidentiality, authentication, and integrity, it is
impossible for key agreement to be implemented using only
symmetric-key cryptography if there is not already a secure,
shared secret between parties. Instead, most common key
agreement protocols, such as Elliptic Curve Diffie-Hellman
Exchange (ECDHE), use methods based on the primitives in
public-key cryptography to derive a shared secret key.

However, public-key operations can be extremely slow
on embedded devices[27]. Thus, public-key cryptography
is frequently considered to be too expensive for embedded
devices, requiring wireless sensors to rely on less secure
methods for authentication and key exchange. For
example, Bluetooth LE relies on an custom and insecure[25]
key-exchange protocol, in order to avoid the computational
expense of public-key cryptography.

CESEL accelerates public-key operations by providing
efficient support for modular arithmetic, including addition
and multiplication, allowing devices to securely authenticate
and communicate keys.

4 Proposed Design

CESEL extends the typical architecture of an SoC
with five additional elements: an atomic, non-volatile
hardware counter, a hardware based random number

Microcontroller with
extended instructions

S-Box
Polynomial Multiplication

Vector Arithmatic

Amaw\

Bus

I Fast Hash Function |1—>
I R-LWE Co-Processor I-l—i

<—b| ECC Co-Processor I
<> Harcware RNGICTR |

Figure 1. CESEL Architecture

generator, additional instructions to accelerate symmetric
block ciphers, a co-processor that efficiently supports
elliptic curve operations, and a co-processor to support
post-quantum public-key operations.

Each co-processor communicates with the main processor
via the memory bus, allowing them to perform independent
computation and preventing the CPU from stalling on
long co-processor operations. Additionally, decoupling
the processor from each co-processor allows each to
be independently power-gated. Since the cryptographic
co-processors are only expected to be operating for a small
portion of time, this reduces leakage power when the
CO-processor is not in-use.

4.1 Hardware Random Number Generator
and Non-Volatile Atomic Counter

CESEL includes a hardware based random number
generator as a core part of its architecture. Software random
number generators sample an external source of entropy
(such as an unconnected ADC pin) and used this source
as an input to a cryptographically secure pseudo-random
number generator (CSPRNG). However, sampling an ADC
or other external entropy source can be slow, which makes
it difficult to accumulate enough entropy for repeated
cryptographic operations. Additionally, if the embedded
device is physically controlled by an attacker, the attacker
will then also control all external entropy sources. They can
then use this control to predict the resulting generator output.

On the other hand, a hardware random number generator
directly samples a fast internal source of entropy such as
a metastable circuit[8]. A metastable circuit operates by
rapidly amplifying inherent thermal noise, resulting in a
highly unpredictable output each time it is sampled. The
resulting bitstream is then fed into a CSPRNG, reducing the
raw entropy source into a conditioned or unbiased output. A
hardware random number generator thus has the advantage
of being both faster and higher-quality than a software only
solution.

CESEL also implements a hardware non-volatile atomic
counter. Nonces are used in many cryptographic algorithms

and reusing the same nonce more than once can prove
catastrophic for security. If power to the device fails at the
wrong time or there is a bug present in the application, it is
quite easy for a sensor node to accidentally reuse a nonce,
which can lead to leaking secret data or cryptographic keys.
A hardware counter would be guaranteed to return a unique
value every time it is queried, regardless of power failure or
other processor state.

Atomic increments of non-volatile memory are easy to
implement in hardware and exist in many real world systems.
A typical implementation consists of two non-volatile
counter registers and a non-volatile bit flag. The bit flag
encodes which register contains the current count and is
considered active. On each atomic increment, the non-active
register is erased and then loaded with the value of the
active register plus one. The bit flag is then flipped,
and the non-active register becomes the active register and
visa-versa.

Importantly, we only return the new value after the
increment has completed successfully. Thus, any code that
relies on a unique value being returned cannot complete until
the counter has successfully incremented, and the counter
can never reset, even in the case of power failure. This
guarantee significantly improves data security by making it
impossible for an application to reuse a nonce.

4.2 Symmetric Cipher Acceleration

CESEL wuses authenticated symmetric ciphers to
guarantee confidentiality, authentication, and integrity on
data transmitted over an insecure channel between nodes.
There are two basic types of commonly used symmetric key
ciphers: block ciphers and stream ciphers. Stream ciphers
encrypt plaintext messages one letter (typically a single bit)
at at time. Block ciphers operate on a fixed size group of
bits called a block and typically perform a fixed number of
repeated operations on the block called rounds. In order to
encrypt more than a single block of data, block ciphers must
be paired with a mode of operation, such as counter (CTR) or
cipher block chaining (CBC). Additionally, some modes of
operation, such as offset codebook (OCB) or Galois/Counter
Mode (GCM), are able authenticate encrypted data for little
additional cost.

CESEL extends a normal sensor node’s CPU with three
groups of instructions to accelerate symmetric ciphers. The
first instruction is the S-box or substitution instruction. The
instruction takes a vector of eight bytes and uses each byte
as an offset into a rewritable 256-byte substitution table.
Each byte is then replaced with it’s given value in the
substitution table. Many symmetric ciphers use S-boxes as
a basic primitive in their operation, and the time it takes
for to perform this lookup can frequently dominate cipher
performance.

The second instruction is the polynomial multiplication
instruction. The polynomial multiplication instruction
performs a carryless multiplication of two vectors of eight
bytes in a Galois Field GF(2"), where n is between 1
and 128. Polynomial multiplication is used in several
different symmetric ciphers (such as AES) and MAC
constructions[10] (such as the GCM mode of operation).
Polynomial multiplication is also very slow to implement in

software but quite fast to implement in hardware due to many
fixed sized shifts and exclusive or operations.

The final three instructions are vector add, vector xor, and
vector shift by constant. The first two instructions, vector add
and vector xor, take two vectors of four 32-bit values and
performs an element-wise add or exclusive or respectively.
Vector shift by constant takes a single vector of four 32-bit
values and an immediate of 5 bits. It performs a shift of each
element by the given immediate value. Many block ciphers,
stream cipher, and MAC algorithms use add, shift, and xor,
and performing each operation in parallel gives a significant
speed boost[5].

4.3 Public-Key Acceleration

Public-key cryptography is a useful class of cryptographic
algorithms that do not require the initial communication of
a secret key. Public-key cryptography is particularly useful
for performing key agreement and signature generation, two
operations that are common on wireless sensors that need to
communicate over a potentially insecure connection.

The most efficient, widely used public-key algorithm,
elliptic curve cryptography[14] (ECC), can be extremely
slow when implemented in software on resource constrained
devices. For example, an optimized implementation
of ECDHE takes about 1.15 second of CPU time on
the L152RE[27] (a 32MHz Cortex-M3 with no special
acceleration for public-key operations). To accelerate the
core operations in ECC, CESEL implements a co-processor
similar to the one presented in [19].

The core operations for ECC can be identified as the
following: modular multiplication and addition. Of these
operations, modular multiplication is by far the most time
consuming. Montgomery modular multiplication (MMM) is
an algorithm that efficiently computes Mont (x,y) = xyR~!
mod N. In particular, it avoids the expensive division by
N that is required in a naive implementation of modular
multiplication. This division is a common bottleneck in other
algorithms. MMM also has the advantage of being efficiently
implementable in hardware[18].

However, MMM is still quite slow compared to
other operations embedded CPUs may perform, typically
requiring hundreds of thousands of cycles. Since most
embedded processors cannot execute instructions out of
order, adding MMM as a primitive instruction would prevent
the core from doing any other useful work while the MMM
operation is being computed. Thus, to allow ECC operations
to occur independently from the main processor, CESEL
implements ECC acceleration as a co-processor that can be
communicated to from the main processor over the normal
memory bus. This allows the CPU to perform other useful
work or to sleep during ECC operations. For a complete
implementation, the co-processor should be able to compute
MMM as well as conversion to and from Montgomery
representation and modular addition.

Additionally, ECC signatures are created by first hashing
the message. To accelerate signatures, CESEL has a fast
hardware implementation of a well analyzed hash function
such as SHA-3. Hash functions (especially complicated
hash functions, such as SHA-3) can be very expensive to
implement on an embedded platform, but quite fast when

implemented in hardware[11]. Since signature generation
depend directly on the performance of the hash function,
a fast and efficient implementation of a hash function will
greatly accelerate the verification and generation of ECC
signatures.

4.4 Post Quantum Hardware Acceleration

The development of quantum computing present a
significant challenge to the long term security of wireless
sensors. In particular, Shore’s algorithm, a quantum
algorithm that enables the efficient integer factorization,
violates the fundamental security assumptions behind both
ECC and RSA, breaking them entirely[6]. However,
not all cryptographic algorithms are made broken by
quantum computers; nearly all symmetric key ciphers,
hash functions, and MAC constructions remain secure.
In particular, the symmetric ciphers and MAC algorithms
that CESEL was designed to accelerate (block ciphers
based on S-Boxes and vector arithmetic, MAC algorithms
based on modular polynomial multiplication and vector
arithmetic) are considered secure even in a post-quantum
world[6]. Additionally, new post-quantum secure public-key
operations have been developed that provide security even in
the face of widely available quantum computers.

Unfortunately, most post-quantum algorithms suffer from
a number of drawbacks, including limited cryptanalysis,
large public and private keys, and slow operation. In
our proposal, we focus on one particular construction,
ring learning with errors (R-LWE)[21][22], which provides
a good balance between security, key size, and speed.
R-LWE has had extensive cryptanalysis and is considered
to be reasonably secure. It is also amenable to hardware
implementation and generally free from patents.

To accelerate R-LWE, CESEL has a co-processor similar
to the one created in [24]. R-LWE based cryptosystems
operate in a polynomial ring R, = Z[x]/(f(x)), where one
typically chooses f(x) = x" 4+ 1 with n a power of two,
and g a prime with ¢ =1 mod2n. Any implementation
must implement basic operations in R, such as addition and
multiplication. In R-LWE, multiplication in R, is by far the
most expensive operation[24].

Therefore, an efficient method for polynomial
multiplication will significantly speed up R-LWE
cryptographic operations. Implementation in hardware
also allows for a number of optimizations that are expensive
or impossible to perform in software, such as pipelining
intermediate values and fast convolution[24]. However,
like ECC, R-LWE is quite slow even when implemented in
hardware. Thus, for the same reasons outlined in section 4.3
(i.e. high latency instructions blocking useful work) R-LWE
operations must be implemented as a co-processor.

4.5 Approximate Area for Co-Processors

The two largest components in CESEL not found in
traditional SoCs are the ECC and post-crypto co-processors.
The ECC co-processor in CESEL is based on the
implementation in [19], which uses approximately 115,000
gates. The post-quantum co-processor is based on the
implementation in [24] which uses approximately 30,000
gates. Thus, the total gate count can be approximated to be

somewhere between 150,000-200,000 gates. As a point of
comparison, this is about 0.25mm? of die area in a 0.65nm
process, roughly 1/16th the amount of area needed for the
analog components of Bluetooth[26].

S Conclusion

The emergence of low power wireless sensor networks
presents a large number of security challenges. In this paper
we examined the fundamental cryptographic primitives
required to secure sensors over a multiple decade lifetime:
random number and nonce generation, symmetric key
ciphers, and public-key cryptography.

We then proposed a new architecture, CESEL,
which accelerates those primitives. CESEL adds five
hardware primitives: an atomic, unique counter, a random
number generator based on physical entropy, additional
microcontroller instructions to accelerate symmetric
cryptography, an elliptic curve co-processor, and a
co-processor for post-quantum cryptography. This design
allows for both long term security and efficiency on a
resource constrained device.

6 References

[1] CVE-2011-3389: The SSL protocol encrypts data by using CBC mode
with chained initialization vectors, which allows man-in-the-middle
attackers to obtain plaintext HTTP headers via a blockwise
chosen-boundary attack (BCBA) on an HTTPS session, in conjunction
with JavaScript code that uses (1) the HTMLS WebSocket API, (2) the
Java URLConnection API, or (3) the Silverlight WebClient API, aka
a "BEAST” attack. http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2011-3389, September 2011.

[2] CVE-2014-4422: Apple iOS before 8 and Apple TV before 7 uses
a predictable random number generator during the early portion of
the boot process. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2014-4422, September 2014.

[3] I Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks: Int J Comput
Telecommun Netw, 38(4):393-422, March 2002.

[4] E. Barker and A. Roginsky. Transitions: Recommendation for
transitioning the use of cryptographic algorithms and key lengths.
NIST Special Publication, 800:131A, 2011.

[5] D. Bernstein and P. Schwabe. Neon crypto. In E. Prouff and
P. Schaumont, editors, Cryptographic Hardware and Embedded
Systems CHES 2012, volume 7428 of Lecture Notes in Computer
Science, pages 320-339. Springer Berlin Heidelberg, 2012.

[6] D. J. Bernstein. Introduction to post-quantum cryptography. In
Post-quantum cryptography, pages 1-14. Springer, 2009.

[7]1 A. Bittau, M. Handley, and J. Lackey. The final nail in wep’s coffin.
In Security and Privacy, 2006 IEEE Symposium on, pages 15 pp.—400,
May 2006.

[8] A. Cherkaoui, V. Fischer, L. Fesquet, and A. Aubert. A very
high speed true random number generator with entropy assessment.
In CHES 2013 15th International Workshop on Cryptographic
Hardware, pages 179-196. TeX Users Group, August 2013.

[9] H. Corrigan-Gibbs and S. Jana. Recommendations for randomness in
the operating system or, how to keep evil children out of your pool and

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

other random facts. In Proceedings of the 15th USENIX conference on
Hot Topics in Operating Systems, pages 25-25. USENIX Association,
2015.

J. B. Daniel and T. Chou. Faster binary-field multiplication and faster
binary-field macs. Cryptology ePrint Archive, Report 2014/729, 2014.
K. Gaj, E. Homsirikamol, and M. Rogawski. Fair and comprehensive
methodology for comparing hardware performance of fourteen round
two sha-3 candidates using fpgas. In Cryptographic Hardware and
Embedded Systems, CHES 2010, pages 264—-278. Springer, 2010.

C. T. Inc. MICAz wireless measurement system. http://www.xbow.
com, June 2004.

L. R. Knudsen, V. Rijmen, R. L. Rivest, and M. J. Robshaw. On
the design and security of rc2. In Fast Software Encryption, pages
206-221. Springer, 1998.

N. Koblitz. Elliptic curve cryptosystems.
computation, 48(177):203-209, 1987.

W. Liu, Z. Wang, S. Qu, and R. Luo. Reconfigurable network
accelerator for wireless sensor nodes. In Advanced Communication
Technology (ICACT), 2015 17th International Conference on, pages
138-142. IEEE, 2015.

M. Matsui. Linear cryptanalysis method for des cipher. In Advances
in CryptologyEUROCRYPT93, pages 386-397. Springer, 1994.
NIST. NIST brief comments on recent cryptanalytic attacks on
secure hashing functions and the continued security provided by
sha-1. http://csrc.nist.gov/groups/ST/toolkit/documents/
shs/hash_standards_comments.pdf, August 2004.

S. Ors, L. Batina, B. Preneel, and J. Vandewalle. Hardware
implementation of a montgomery modular multiplier in a systolic
array. In Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, pages 8 pp.—, April 2003.

S. Ors, L. Batina, B. Preneel, and J. Vandewalle. @ Hardware
implementation of an elliptic curve processor over gf(p). In
Application-Specific Systems, Architectures, and Processors, 2003.
Proceedings. IEEE International Conference on, pages 433—443, June
2003.

C. Otero. ASYNCHRONOUS DESIGN FOR UBIQUITOUS
COMPUTING. PhD thesis, Cornell University, August 2014.

O. Regev. New lattice-based cryptographic constructions. Journal of
the ACM, 51(6):899-942, 2004.

0. Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM, 56(6):34, 2009.

R. Roman, C. Alcaraz, and J. Lopez. A survey of cryptographic
primitives and implementations for hardware-constrained sensor
network nodes. Mobile Netw Appl, 12:231244, October 2007.

S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and
1. Verbauwhede. Compact ring-lwe cryptoprocessor. In Proceedings
of the 16th International Workshop on Cryptographic Hardware and
Embedded Systems — CHES 2014 - Volume 8731, pages 371-391,
New York, NY, USA, 2014. Springer-Verlag New York, Inc.

M. Ryan. Bluetooth: With low energy comes low security. In WOOT,
2013.

W. W. Si, D. Weber, S. Abdollahi-Alibeik, M. Lee, R. Chang,
H. Dogan, H. Gan, Y. Rajavi, S. Luschas, S. Ozgur, et al. A single-chip
cmos bluetooth v2. 1 radio soc. Solid-State Circuits, IEEE Journal of,
43(12):2896-2904, 2008.

H. Tschofenig and H. Pegourie-Gonnard. Performance of
state-of-the-art ~ cryptography on arm-based microprocessors.
Presented at the NIST Lightweight Cryptography Workshop 2015,
2015.

Mathematics of

