Grant to Send: Fairness and Isolation in Low-Power Wireless

Technical Report SING-06-01

Jung Il Choi and Philip Levis
Computer Systems Laboratory
Stanford University
Stanford, CA 94305

Abstract

We present the Fair Waiting Protocol (FWP), which iso-
lates competing multihop wireless protocols. Intended
for wireless sensornets, FWP sits on top of a basic CSMA
data link layer. When a multihop protocol transmits a
FWP packet, it embeds an interval of post-transmission
exclusive access. During this period, only the packet’s
recipient may transmit. Where an RTS/CTS protocol re-
quests permission for its transmitter to send, FWP grants
permission to someone else by transmitting to them. FWP
uses grant durations to fairly allocate the channel in a
distributed fashion. FWP is 270 lines of nesC code, has
a single byte header, and requires 3 bytes of state per
protocol. Through simulation and real traffic loads on a
testbed, we show that with these meager resources, FWP
enables multihop protocols to easily and cooperatively
share the channel. In the case of a collection protocol,
this can improve its goodput by 30% while simultane-
ously improving its energy efficiency.

1. Introduction

Deciding when to transmit a packet is one of the funda-
mental challenges of wireless networks. This challenge
is in part due to the inability for a transmitter to be able to
observe what happens at a receiver. As communication
is not transitive yet is through a shared medium, wire-
less MAC protocols seek to establish simple mechanisms
for distributed collaboration. Typical CSMA layers use a
single bit — am I transmitting? — to communicate, while
RTS/CTS uses complete packet exchanges.

One domain where the problem is particularly acute
is wireless sensornets. Their low-speed radios and tight
energy budgets make every packet precious and idle lis-
tening time a luxury. In sensornets, colliding packets
represent wasted energy, rather than wasted bandwidth,
and higher goodput means less time is spent awake. The
importance of optimizing packet delivery in this domain

has led to a plenitude of MAC protocols [21} 25|32} 39].
As most MACs provide only a simple datapath, typically
network protocols use higher-level mechanisms in order
to increase their efficiency, such as rate-control to pre-
vent self-interference [[12, 36]].

But network-layer schemes assume that the network
protocol operates in a vacuum. This approach is suit-
able in Internet systems, where there is a single network
protocol and a small number of transport protocols (i.e.,
TCP, DCCP, UDP). In contrast, a sensornet can have a
complex assortment of network protocols, such as col-
lection [12, |24} 38|, dissemination [[11} 33} |34], logical
coordinate routing [20], local aggregation [26], network
aggregation [13}|18]], and flooding [19]]. Self-interference
is only part of the problem: other protocols can just as
easily interfere.

Current sensornet operating systems take a first-come,
first-served approach to channel allocation. One protocol
can consume a lion’s share of the bandwidth. Small in-
memory queues exacerbate this problem. For example, a
common TinyOS routing protocol, MintRoute [37], can
collapse under heavy load when route update packets are
dropped from full transmit queues [_8]. In addition to in-
terference, protocols can also fail due to unfair allocation
of OS resources and the wireless channel.

The motivation for this paper is the observation that
for a sensornet to be able to efficiently support multiple
network protocols, it must provide two key properties:

Isolation: The network should minimize inter-protocol
collisions. From a protocol’s perspective, when it trans-
mits it is the sole user of the network. Other protocols
may reduce how often it may transmit, but its opportu-
nities are isolated from interference. Isolation simplifies
protocol implementations and prevents one misbehaving
protocol from sabotaging the entire network.

Fairness: Isolation places requirements on the wire-
less channel during transmissions; fairness places require-
ments on how often a protocol can transmit. Providing

fair channel allocation between protocols further protects
them from one another, promising that each can operate
in the face of wild variations in competing load.

Section[2]proposes a novel protocol abstraction, grant-
to-send (GTS), which meets these requirements. It de-
scribes Fair Waiting Protocol (FWP), a GTS protocol
that sits between a CSMA MAC and network protocols,
introducing a single byte header to every packet. This
header specifies a time for which, after the packet is trans-
mitted, no node except the recipient may transmit. Un-
like RTS/CTS, where a packet exchange requests the chan-
nel for a transmitter, in FWP a node grants the channel
to a receiver. Network protocols can use this mechanism
in several ways in order to improve their performance,
such as clearing a route and scheduling data bursts. Fur-
thermore, these quiet times can be used to tabulate how
long protocols have used the channel, allowing FWP to
allocate it fairly between them.

Sections [3f4] evaluate FWP in small single-hop net-
works of low-power sensor nodes (“motes”) and on the
Motelab testbed at Harvard University [35]. FWP is ap-
proximately 270 lines of nesC code, introduces a single
byte header on packets, and requires 2 + 3p bytes of state,
where p is the number of protocols the system supports.
With these meager requirements it can provide inter-node
fairness greater than 0.98 within single-hop cells and a
median fairness of 0.97 in large multihop deployments.
Its inter-protocol fairness is greater than 0.98 in all cases.
Furthermore, by isolating protocols FWP increases the
goodput of a tree collection protocol by up to 30% while
simultaneously improving its energy efficiency by up to
10%. As traffic loads increasingly vary across nodes,
FWP’s ability to provide fairness decreases, but it con-
tinues to maintain isolation between protocols so they
can operate efficiently. Finally, our results show that the
overlapping nature of wireless communication places a
fundamental tradeoff between transmit (per-node) fair-
ness and channel (network) fairness.

This paper makes four research contributions. First, it
proposes grant to send (GTS) as a mechanism for me-
dia access. Second, it presents an example GTS proto-
col, FWP, and describes how it be the basis of efficient
and robust sensornets. Third, it presents solutions to sev-
eral complexities that arise when applying fair queueing
algorithms to protocols on lossy, low-power networks,
such as allocation estimate inconsistencies (Section [3.4)
and diverse multihop networks (Section @ Fourth, it
demonstrates that with these solutions FWP can improve
protocol goodput and energy efficiency (Section).

Section[3ldescribes how these contributions draw from
the large corpus of prior work. FWP builds on wire-
less network research on layer 3 fair rate control [36]
12, |24] and layer 2 fair packet scheduling [1} 4] to de-
fine a unifying mechanism that sits between the two. As

nodes may have differing traffic loads, do not have uni-
form connectivity, and the network is lossy, FWP can-
not use existing fair queueing algorithms verbatim, but
must instead adapt and adjust them to work in light of
the challenges encountered in low-power wireless net-
works. Similarly, while these has been a great deal of
investigation of how to apply fair queueing to wireless
networks [16} 31f], these techniques either require being
able to control the MAC, which is not always possible, or
in the case of sensornets are concerned with node fairness
within a protocol rather than fairness between protocols.

Section [6] discusses the results of this paper and their
significance in the scope of the larger question of sen-
sor network architectures. Taking advantage of multihop
information on traffic patterns and connectivity, network-
layer rate control can generate a good estimate of when to
send another packet. Deciding when to actually send that
packet, however, is up to the MAC layer. FWP demon-
strates that a small amount of cross-layer communication
— in this case, a GTS quiet time — can improve net-
work performance and robustness while remaining flexi-
ble enough to have a broad range of uses.

2. The Fair Waiting Protocol

This section describes the motivation behind the grant-
to-send mechanism and how it can be used as the basis
for mulithop wireless fair queueing. It describes FWP, a
GTS protocol.

2.1 Motivation

Unlike the Internet, which uses a single network (layer
3) protocol, sensornets typically use several protocols
concurrently [2], each of which has different traffic pat-
terns and timing expectations. When protocols violate
each other’s assumptions, they can greatly reduce energy
efficiency and cause failures. For example, some rout-
ing protocols use rate control to avoid self-interference
along a path [36]]. Another protocol, however, can eas-
ily disrupt this by sending bursts of packets during the
desired inter-packet intervals. For multiple network pro-
tocols to be able to efficiently coexist, the network must
provide mechanisms to avoid inter-protocol interference.
As timing requirements are the result of a local computa-
tion, but transmission decisions are not limited to a single
node (another node could send an interfering burst), the
logical place to introduce multi-hop interference avoid-
ance mechanisms is below the network protocols.

Multihop-aware interference avoidance only solves part
of the problem. While it causes protocols to respect the
transmissions of others, it does not promise that a pro-
tocol can transmit. In addition to isolating concurrent
packets from each other, the network needs to isolate
sources of packets so that each achieves a fair share of

the available bandwidth. In wired networks, fairness al-
gorithms use the time a packet is on the medium, rather
than packet counts, in order to not penalize protocols that
send many short packets. In this case, however, the wire-
less medium means that protocols often want to hold the
channel but leave it unused to prevent self-interference.
These time intervals lend naturally to calculating a pro-
tocol’s utilization of the channel.

There are challenges in mapping these approaches to a
real protocol, however. In a wireless network, these fair-
ness calculations are distributed, rather than centralized:
when a node transmits a packet for a protocol, the proto-
col uses not only the channel of the source, but also ev-
eryone who hears it, and this must be taken into account.
Furthermore, packet losses mean that this distributed in-
formation can become inconsistent.

An abstraction that causes protocols to collaboratively
share the channel without explicit coordination would be
a useful and powerful building block when construct-
ing large and complex applications. Protecting protocols
from each other’s traffic would minimize unforeseen in-
teractions and isolate failures, leading to more compos-
able and more robust systems.

2.2 GTS and FWP Overview

When a network protocol sends a GTS packet, it may
specify a post-transmission quiet time during which only
the recipient may transmit. As a transmitter must obey
the quiet time, when it transmits it allocates and grants
the channel for exclusive use by the destination, which
can in turn grant the channel to another node.

Figure [I(b)] shows how GTS tabulates quiet time over
an example multihop packet exchange. The exchange
begins when B sends a packet to C. Both B and A must
obey this quiet time (black), while C, being the recipi-
ent, does not. C sends a packet back to B; both C and D
must obey the quiet time (grey), but B must wait until its
black quiet time expires before transmitting again. When
the black quiet time expires, A wins CSMA between B
and A and sends a packet to B. B forwards the packet to
C, who waits until the end of his quiet time before for-
warding it to D. When B’s quiet time from this exchange
expires it send a packet to A.

FWP is a GTS protocol that uses grant durations and
packet transmission times to estimate how long each pro-
tocol has occupied the channel. Given a set of transmis-
sion requests from different protocols, FWP transmits a
packet from the protocol that has occupied the channel
least. This is a simple version of the basic fair queue-
ing algorithm defined by Demers et al [4]. Unlike tra-
ditional fair queueing algorithms, which allocate band-
width on a single node, GTS allocates the channel access
time across a region of the network. In a wired network,
links are independent and network protocols move pack-

> .
C@

—> Y A 4
O @

(a) Quiet time over- (b) A complex GTS multi-
lap. hop packet exchange.

Figure 1: How quiet time is calculated, allotted, and
used to schedule packets. Solid lines are received
packets, dashed lines are overheard packets, and the
boxes are post-transmission quiet times.

Py Py

Po Po

Figure 2: Distributed fairness in multihop networks.
For all nodes to observe channel fairness, they must
see the channel utilized 50% by P0 and 50% by P1.
In multihop networks, obtaining perfect fairness si-
multaneously can be impossible.

ets from one link to another. In a CSMA-based wireless
network, the medium is a continuous space which many
nodes share and can influence.

Furthermore, as multiple nodes share the channel and
connectivity is not transitive, quiet times can easily over-
lap. Figure illustrates how FWP tabulates channel
occupancy when quiet times overlap. If a quiet time in-
terval b overlaps an existing quiet time a, then FWP only
considers the packet to allocate the channel for the period
which b extends beyond a (the interval c in the figure).

Because FWP allocates time over space and receivers
do not adjust their allocations, nodes in single-hop com-
munication range do not agree on how much different
protocols have used the channel. Consider the case shown
in Figure 2| where there are three nodes, two of which
are hidden terminals to each other. If these two nodes
transmit packets of protocol P; but the center node trans-
mits packets of protocol Py, it is not possible to have fair
channel utilization at every node. Fairness at the edge
nodes means each observes F; and P; using an equal
share of the channel. For the center node to observe
fairness, the two P; transmissions would have to be at
exactly the same time, causing the hidden terminal prob-
lem and preventing the center node from observing them.
The three nodes cannot all observe channel fairness.

Value | Meaning

tx Transmit time of a packet.

q Quiet time a packet requests.

d Duration of a packet: tx + q.

Ty Time that p has occupied the channel.
Qp End of p’s quiet time.

R, Requested quiet time of p’s next packet.

Table 1: Notation for values in FWP. p is a protocol,
defined by a protocol identifier in a data-link packet
header (e.g., AM type).

2.3 FWP Details

Table[Tlsummarizes the notation used to describe FWP.
FWP keeps track of three values for each protocol p in
the system. The first is 7}, the amount of time that a pro-
tocol p has occupied the channel. The second is @, the
end of p’s quiet time, that is the earliest time at which
FWP may send a packet while respecting p’s grants. The
third is Iz, the quiet time request of the next packet from
protocol p. If FWP has packets from multiple protocols
outstanding, it selects the p with the smallest T}, and sub-
mits it to the data link layer for transmission when all
quiet times () have expired.

When FWP overhears or transmits a packet of protocol
p, it increases T}, and sets @), to be the current time plus
d. A packet increases the channel allocation of and en-
forces a quiet time on everyone except the receiver. From
the receiver’s perspective, the packet has not reserved the
channel. As everyone receives broadcasts, they increase
T}, and), only on the transmitter.

The example in Figure shows how this algorithm
leads FWP to handle overlap in quiet time intervals. As
mentioned earlier, when a FWP hears a packet from pro-
tocol P with a quiet time ¢, it does not automatically
add ¢, to P’s channel allocation Tj,. Rather, it adds the
amount that ¢, extends beyond the current quiet time
(maxz(Qp) —tp) FWP measures the time a protocol actu-
ally has the channel allocated to itself, not the sum of its
reservations. This approach also applies to overlapping
between multiple protocols; the first protocol pays for its
full interval, but other protocols pay only for how much
their interval extends beyond it. In Section[6| we discuss
an example of why this overlapping is desirable and how
it can enable a class of bandwidth-intensive protocols.

3. Abstract Loads

This section defines the fairness and isolation metrics
used in this paper. It evaluates FWP’s fairness and isola-
tion in single-hop and multihop networks under abstract
protocol loads on small single hop networks and a large
multihop testbed. The protocol loads are abstract in that
they are inexhaustible sources of packets generated at ev-
ery node, with no correlation between individual trans-

Fairness | Description

Channel Time different protocols allocate channel at a node (RX or TX).
Transmit | Time allocated at a node by transmissions of different protocols.
Node Time allocated by different nodes for a single protocol.

Table 2: Three fairness metrics used to evaluate
FWP. All metrics use the Jain fairness index (JFI).

missions. Abstract loads allow evaluate FWP in simple
circumstances without complex inter- and intra-protocol
dynamics. This section defines the fairness and isolation
metrics with which we evaluate FWP. The next section
evaluates FWP under real protocol loads in a multihop
sensor node testbed.

3.1 Fairness and Isolation

Table Plsummarizes the three forms of fairness that are
relevant to FWP. The first is channel fairness, or how
fairly the channel is allocated to different protocols be-
tween all of the nodes in a region of the network. The
second is transmit fairness, or how fairly a given node
schedules its own packet transmissions. The third is node
fairness, or how fairly a protocol’s time on the chan-
nel is spread across nodes. A network where only one
node transmits packets can have high channel and trans-
mit fairness but low node fairness. In the best case, a
network provides all three. As sensornets CSMA proto-
cols typically do not use exponential backoff, they give
each node an equal chance of acquiring a channel and do
not suffer from the backoff capture effect that occurs in
exponential schemes [23].

This paper measures fairness using Jain’s fairness in-
dex (JFI) [[14]:

. (Z?:l xi)Q

f($17$27$3»~--;$n) = m

The second metric for FWP is isolation, which mea-
sures how well it causes protocols to respect each other’s
quiet times. We measure isolation in the context of a
one-hop network by having a single node be the recipi-
ent of all packets. Each transmitter has a fixed number
of packets to send after which it stops. If quiet times are
observed perfectly, then the time for all nodes to com-
plete their transmissions should be greater than or equal
to sum of all d, with a bit of extra time for initial CSMA
backoff. We quantify isolation as the fraction of expected
time. If 3"d is 400 seconds and the transmissions take
360 seconds, then the experiment had an isolation index
of 0.9. If an experiment takes longer than }"d, we give
it an isolation of 1.0. This metric assumes that there is
no external interference that might cause a large num-
ber of backoffs or packet corruptions. All experiments
with real motes used 802.15.4 channel 26, which expe-
riences minimal interference from external sources such
as 802.11b [29].

P1 | P2 P1 | P2
T | T2 @ \Q\; TT
T | T @A)P2 @ T T
T+ | T4 \%‘ P1(@ T+1 | T+1
0 100 200 300 741 | T @)P2 @ T+1 | T+2

Time (s)
(b) Ping-pong effect.

(a) Protocol channel shares
over time. This node has a
transmit fairness of 0.66.

Figure 3: Packet loss can lead to low transmit fair-
ness. The plot shows the per-protocol outgoing band-
width for one node in a 5-node network. The cause is
the ping-pong effect, shown on the right.

3.2 Uniform Lossless Load

In an ideal network, where every node offers the same
load and there are no collisions and no packet losses,
FWP provides channel, transmit, and protocol fairness.
Because every node sees the same packets, every node
maintains an identical estimation of 7" for each protocol.
Therefore, they all agree which protocol should be sent
next and the next node to transmit will choose the one
with the smallest T'. This provides channel fairness. As
each node has an equal chance of being the transmitter
when a quiet time expires, each node transmits an equal
share of each protocol’s packets, providing both transmit
and protocol fairness. Because no packets are lost or col-
lide, there is perfect isolation: every node waits until the
current quiet time expires, then one transmits.

3.3 Isolation and CSMA

CSMA is inherently imperfect. First, it is possible that
two nodes sample the channel at the same time and both
decide to transmit. Second, radios take time to transition

from receive (channel sensing) to transmission mode. Dur-

ing this RX/TX transition, another node could sense a
clear channel and decide to transmit. We measured FWP’s
isolation on a small number of nodes in easy radio range
of each other, and discovered that even in single-hop net-
work its isolation was 0.95.

Examining the traces, we found the cause to be the

RX/TX transition time. The standard TinyOS stack chooses

initial backoff periods in the range of 0.3-10ms, but only
chooses from 32 possible values. It chooses between 10
and 320 “jiffies” (ticks of a 32kHz clock) with a 10 jiffy
granularity. Because the expiration of a quiet time syn-
chronizes the CSMA transmission requests of multiple
nodes, then for n nodes the chances that two nodes col-
lide on the earliest slot is (1 — %n_l). A collision will
cause at least three packets to be transmitted in one quiet
period: the first two that collide, followed by a node that

picked a later backoff value.

>
/

Channel Share
o o o o
o N N o [+:] =
Channel Share
e o o 9
o N N ()] [+<] -
—~3

P1 P2

o

100 200 300
Time (s)

o

100 200 300
Time (s)

(a) Decaying T' (b) Flushing T’
Figure 4: Effect of decaying and flushing 7" periodi-
cally to filter out loss-based inconsistencies. For the
node shown, decaying every second leads to a trans-
mit fairness of 0.994 and flushing every second leads
to a transmit fairness of 0.991.

We explored several solutions this problem, such as
adding jitter to quiet times and introducing reception la-
tencies. The best solution turned out to be to simply re-
move the unnecessary quantization of the CSMA back-
off. Rather than choose one of 32 backoff values with a
10 jiffy granularity, the stack chooses values with a gran-
ularity of 1 jiffy. This restores FWP’s isolation to 1.0.

3.4 Uniform Load with Loss

The simple version of FWP described above is not
without faults. For example, a protocol can accumulate a
large T and later be starved by protocols who have been
quiet for a long time. A second and greater issue is that
packet losses can greatly complicate fair channel alloca-
tion. Even in a single hop network, lost packets cause
nodes to have inconsistent views of 7". The nodes dis-
agree on how to achieve channel fairness, leading to low
transmit fairness values.

Figure |3 shows the normalized packet transmissions
of one of five Telos nodes in a single hop network. Each
node has an abstract load of three protocols with quiet
times of 20, 40, and 80ms. The network has high channel
fairness (0.99). While protocols are receiving a fair share
of the channel, nodes are servicing protocols unevenly.
For example, the transmissions of the node shown in Fig-
ure [3] allocate the channel with a ratio of 8:15:1 rather
than 1:1:1, leading to a transmit fairness of 0.66.

This behavior is due to packet loss. If one node drops
a packet of protocol F, then its perception of channel
utilization will differ from that of nearby nodes. Its esti-
mation of T will mean that it thinks P should be trans-
mitted next. If it transmits P, however, all other nodes
will think Py has used the channel significantly more,
and so only transmit other protocols. Nodes have differ-
ing opinions on which protocol needs more time on the
channel, and do not allocate their transmissions fairly.
While the overall network allocation is reasonably fair,
the per-node allocation is not. This can lead to local star-

N
0.999 0.999

& 0.998 & 0.998
n a

0.997 0.997

0.996 0.996

P1 P2 P3
Node Protocol

(b) Node fairness for pro-
tocols P1, P2, and P3.

(a) Transmit fairness at
nodes A-E.

Figure 5: Fairness in a single hop lossy network for
five nodes offering uniform load of three protocols
with quiet times of 20, 40, and 80ms and periodically
decaying 7'. The channel fairness is 0.9995.

vation.

As FWP’s selection of transmissions is deterministic,
inconsistencies lead to unfair utilization. We explored
three possible several to resolve these inconsistencies:
periodically advertising measured channel utilization, pe-
riodically decaying T' by dividing all T}, by 2, and pe-
riodically flushing all T, to be zero. Periodically ad-
vertising channel utilization could give nodes consistent
views. However, as Figure [2| showed, these values in-
herently vary over space; periodic advertisements lead to
unfair allocation within the network, as local variations
that could be overcome are overwritten instead. Further-
more, in multihop network channel allocation inherently
varies across nodes, and so resolving to a single uniform
value does not reflect local channel fairness.

Figure [] shows the effect of periodically halving or
flushing 7. Both approaches restore transmit fairness.
But how often should FWP decay or flush 7?7 We ad-
dress this question in the context of a multihop network
in Section[3.6] As decaying 7" changes which protocols
are transmitted but not when, it has no significant effect
on isolation.

3.5 Varied Load

The previous experiments explored FWP’s fairness and
isolation when all nodes in a single-hop network offer
uniform load. When nodes have varied loads (the set of
protocols which have pending packets), FWP must deal
with the fact that the underlying CSMA layer arbitrates
access to the channel. Figure shows the distribution
of transmissions for a single-hop network of Telos nodes
offering varied load. One node sends packets of protocol
P, while four nodes send packets of protocol P». Both
protocols have the same quiet period. Fair channel al-
location would call for the nodes to collectively send an
equal number of P, and P> packets, but the ratio is in-
stead 4:1. This ratio comes from the MAC layer. When a
quiet period ends, each node tries to acquire the channel,
and there is an 80% chance the node that does so will

o
w
-

4
©

°
Y

°
N
o
®

Channel Share
Global Fairness

(=]
e
N

A B [D E o 1 2 3 4 5 6
Node Protocol Penalty (ms)
(a) With no protocol (b) Channel fairness for
penalty, channel fairness is different protocol penal-
0.746. ties.

Figure 6: Packet transmissions with varied load.
Node A sends only P1 and nodes B-E send only P2.
A protocol penalty restores the channel fairness from
0.746 to 0.9978 with a 4ms penalty, 0.9998 with Sms
and 0.9999 with 6ms.

0.5
204
203 Homs
€ 0.2 O6ms

& 4
S 0.1

P1 P2 P3
Protocol

Figure 7: Fairness under complex varied load. One
node sends P1, two send P2, and three send P3, all
with a quiet time of 25ms. A 6ms protocol penalty
improves channel fairness from 0.876 to 0.951.

transmit P;. CSMA randomly selects a node, and this
leads to low global fairness.

To address this problem, FWP institutes a penalty to
a protocol whose quiet-time just expired. It does this
by increasing @ of the protocol with the lowest T' by
a small amount. If @, is far in the past, then the pro-
tocol can be sent normally. However, if it was p’s quiet
time whose expiration allowed transmission, then other
protocols will be able to transmit first, as they only wait
until Q,. Figure shows the effect on fairness as
this penalty value is increased in the case shown in Fig-
ure [6(a)] At 6ms, the channel fairness is 0.9999; FWP
uses this as its protocol penalty. 6ms is approximately
two packet times for the Telos’ CC2420 radio.

While the protocol penalty improves channel fairness
in this simple case, it has several limitations. First, if all
nodes agree on channel utilization and still wish to trans-
mit the penalized protocol, FWP forces them to wait un-
necessarily, reducing network capacity. Second, while
it works in the two-protocol case, it degrades as the load
becomes more complex with increasing numbers of nodes
and protocols. Figure [/|shows the effect in a more com-
plex situation.

Solving this problem perfectly requires global knowl-
edge, but FWP is intended to be a lightweight and local

H
S
8
2

100%

®
2
8

N
2
8

|
|
|
|
{
4

»
2
R

Cumulative Fracion
Cumulative Fracion

N
5
B3

D250

N:

D500 %

0 02 04 06 08 1 0 02 04 06 08 1
Fairness Fairness

F500_

2
8

(a) 20, 40, and 80ms (b) 20, 60, and 140ms

Figure 8: CDF of transmit fairness on the motelab
testbed under two abstract packet loads for decaying
(D) and flushing (F) 7. Decaying 7" values every 250
or 500ms leads to the best fairness distribution. D500
has a channel fairness of 0.995 in (a) and 0.994 in (b).

mechanism. While FWP does not provide perfect fair-
ness under varied load, its fairness is greater than relying
purely on CSMA. The techniques proposed by Vaidya
et al. to provide MAC-level fairness [31] for wireless
flows are a fruitful place to start on investigating how to
improve FWP’s fairness under varied load; we plan to
explore such possibilities as future work.

3.6 Multihop Fairness

Section 3.4 showed that inconsistencies between T es-
timates can harm transmit fairness, and that in a single-
hop network periodically flushing or decaying 7' values
restores it. A multihop network poses a more difficult
situation, as its traffic loads may be inherently unfair.
Flushing and decaying were effective, the rate at which
FWP performs them can have a significant effect. Flush-
ing every packet time would clearly be problematic. The
update intervals may depend on the quiet times specified:
decaying quiet times of 10ms every 250ms may be feasi-
ble, but decaying times of 250ms at the same rate might
reduce fairness.

To explore these issues and get a sense of how often
FWP should decay 7', we ran two abstract loads on Mote-
lab. One load has nodes send packets with quiet times of
20, 40, and 80ms. The other has quiet times of 20, 60,
and 140ms. Our belief was that an interval along the
lines of the least common multiple would be desirable,
and chose the second load such that it would be com-
paratively large (420ms rather than 80ms). We evaluated
the flush and decay policies at intervals of 125, 250, 500,
1000, and 2000ms as well as with no 7" updates by ex-
amining the distribution of transmit fairness values.

Figure [§] shows a subset of the results. Large inter-
vals are disastrous as is using 7' without periodic ad-
justments. For both workloads decaying 7" every 250 or
500ms works best, with each one being slightly supe-
rior in a different workload. We are uncertain why these
values are the most effective. Given all of the factors in-
volved (topology, loss, CSMA, load), we consider a fur-

Event Action

Hear or transmit protocol p Increase T}, and Q,, by d

Decay interval expires (500ms) Halve all T’

Quiet times expire Submit p of min(T) to CSMA
If p was last protocol heard
expiration time += protocol penalty

Table 3: The complete FWP protocol. The notations
are from Table [

ther investigation of this topic an important area of future
work beyond the scope of this paper.

4. Real Loads

The prior section described FWP and evaluated how
it performs under abstract protocol loads. This section
summarizes the complete FWP algorithm and evaluates
it on Motelab under real traffic loads generated from ex-
isting sensornet multihop protocols.

4.1 Complete FWP

The complete FWP is the version presented in Sec-
tion [3.4] with periodic 500ms 7" decay and a protocol
penalty of 6ms. Table [3| summarizes the protocol. Im-
plemented in the TinyOS 2.0 operating system as an al-
ternative queue implementation between network proto-
cols and the data link layer, FWP is approximately 270
lines of nesC code. It requires two bytes of additional
state (the end of the longest quiet time) plus three bytes
per network protocol. Two bytes store the T}, value and
one byte is used to translate between key namespaces in
the generic components (there may be multiple senders
of a single protocol, but each protocol should still only
get one share).

Just as in TinyOS 2.0, a FWP data link layer provides
each instance of the packet sending service AMSenderC
with a queue of depth one. Protocols may place their own
queues on top of this in order to have greater buffering.
These queues isolate network protocols from one another
in terms of buffer management, such that one protocol
cannot monopolize the queue. The standard TinyOS im-
plementation services senders with a round-robin policy.
FWP merely changes this to service them based on 7" val-
ues. The implementation keeps time in millisecond gran-
ularity, and allows protocols to specify a d of 0-255ms
(up to =75 packet times for the commonly used data link
layer in sensornets today, 802.15.4), adding a single byte
header to all packets.

Properly implementing FWP requires being able to can-
cel a packet once it has been submitted to the data link
layer. We modified the standard CC2420 radio stack to
support this functionality. The TinyOS packet sending
interfaces have a cancel function, but this is only im-
plemented at the queueing level. Once the radio has be-
gun CSMA to transmit, network protocols cannot cancel

the transmission. As FWP’s quiet time synchronization
causes many nodes to enter CSMA at the same time, we
added the ability to cancel into the data-link stack. When
the data link layer cancels a packet in the FWP stack, this
stops the CSMA backoff timer, flushes the packet from
the radio packet buffer, and returns to a listening state.
Because FWP requires being able to overhear pack-
ets and the CC2420 radio does not support hardware-
generated acknowledgements unless there is address fil-
tering, the FWP stack uses software-level acknowledg-
ments. We are currently discussing with ChipCon possi-
ble changes in next generation radios that might let them
better support FWP and other sensornet protocols.

4.2 Real Traffic Loads

All of the previous experiments used abstract packet
loads of protocols that are not truly multihop. As FWP
actively silences transmissions over possibly dense areas
of a network, it could significantly decrease network ca-
pacity. While interference avoidance may improve net-
work goodput, more retransmissions may be just as ef-
fective. This raises the question: how does FWP affect
network goodput and efficiency?

To evaluate whether FWP meets its goals under real
traffic loads, we implemented three multihop protocols
from the literature: a rate-controlled tree collection pro-
tocol proposed by Woo et al. [36] (ARC) and two dissem-
ination protocols, PSFQ [33]] and Trickle [15]]. We imple-
mented ARC so that we could run multiple instances as
separate protocols to capture more complex dynamics.

4.2.1 Network Protocols

ARC assumes an application produces traffic at a con-
stant rate. It uses a probabilistic scheme to meter this rate
with a dynamically estimated probability p. When ARC
receives a request to send a packet, it sends the packet
with probability p. When the network is underutilized,
p is 1, and it decreases as contention increases. ARC
adjusts p using additive increase multiplicative decrease
based on whether the next hop successfully forwards a
packet and observes this through packet snooping. To
separate out bad route selection from data interference,
the ARC implementation uses a static routing tree which
we derived from connectivity experiments. A quiet time
in ARC allows a transmitter to hear the next hop forward
the packet without interference. Our ARC implementa-
tion has a five packet queue.

PSFQ is a reliable dissemination protocol that uses
NACKSs to locally recover from lost packets. A source
generates data items, which the network propagates us-
ing a controlled flood. Every data item has a sequence

number, and nodes maintain cache of recently heard items.

If a node detects it has missed a sequence number, it
sends a NACK and neighbors respond with the missing

Protocol Ry Interval
ARC root Oms 0

ARC non-root 10ms 1s
PSFQ 10ms 1s
Trickle (; =1s, 7, =1024s) | Oms 60s

Table 4: Configuration of network protocols for mul-
tihop tests. 7, is the requested quiet time of a packet,
and interval is the time between separate packet gen-
eration events. For ARC this is nodes sending to the
root, for PSFQ and Trickle this is the root disseminat-
ing to the nodes.

item. These responses have random jitter and suppress
each other in order to prevent a response implosion. A
quiet time in PSFQ forces a data transmitter to wait to
hear for a possible NACK.

Trickle is a reliable dissemination protocol that dy-
namically adjusts its transmission intervals in order to
trade off between increasing propagation speed and de-
creasing the cost of detecting missed items. Every node
advertises its data at a random point in an interval of
length 7, but suppresses its transmission if it hears an-
other node advertise the same data. Because Trickle uses
network-level rate control, it does not institute a quiet
time. However, its transmissions obey the quiet times of
others. We used a modified version of the standard dis-
semination protocol implementation (DisseminatorC)
in TinyOS 2.0.

4.2.2 Experimental Setup

The following experiments all ran on the Motelab sen-
sornet testbed at Harvard University [35]. This testbed
consists of 180 Telos nodes attached to the ceiling of
a busy office environment with many obstructions. We
used 40 of the 180 nodes. As the nodes are on the ceil-
ing, there are few changes in line-of-sight or obstacles
that vary over time: the received signal strength between
a node pair is generally very stable. However, as the net-
work is in an active office environment, there is a great
deal of 802.11b interference with high temporal varia-
tions. As 802.11b can interfere with the 802.15.4 radios
on micaZ motes, this traffic introduces many complexi-
ties to packet delivery rates [29]]. We ran all experiments
on 802.15.4 channel 25 with a transmit power of -OdBm.
Based on experiments running the protocols in isolation
and their logic, we assigned ¢ values as shown in Table[d]

Each multi-protocol experiment has two separate ARC
trees, over which every node tries to send packets at a rate
whose aggregate traffic will use a significant portion of
the network capacity without saturating it (1Hz). Push-
ing packets faster than this leads to the nodes close to
the root ignoring forwarding traffic and monopolizing the
bandwidth to the root. PSFQ pushes a new data values
into the network every second, and a new Trickle value

-
o
[}

(<))

BECSMA
OFwp

BECSMA
OFwp

N

Goodput (packets/s)
Cost (tx/goodput)
EN

o N A O @

[=]

ARC1 ARC2 ARC1 ARC2

(a) ARC goodput. (b) ARC cost.

Figure 9: Goodput and cost for two separate ARC in-
stances running in the presence of PSFQ and Trickle
on top of CSMA and FWP. FWP increases goodput
by 23-30% and decreases cost by 5-10%.

20 4

—ARCL 20 —ARC1
— ARC2 — ARC2
] - w
T \ il LA I AA
g A NV
g g 0
o o
4 4
0 0 - - - - - -
0 100 200 300 0 100 200 300
Time (s) Time (s)
(a) CSMA (b) FWP

Figure 10: ARC goodput over time using CSMA and
FWP. CSMA moves between 8 and 16 pps, while FWP
maintains a more steady rate around 12pps.

is inserted every minute. We performed this experiment
with the standard TinyOS networking stack and with our
FWP implementation.

We ran the suite of protocols for ten minutes and col-
lected data on the network behavior. For both the stan-
dard TinyOS networking stack and the FWP stack, we
measured the goodput at the root of each of the ARC
trees, the successful delivery rate of PSFQ, trickle prop-
agation latency, and how long each protocol’s packets
spent in the data-link transmission queue.

4.2.3 Multi-protocol Results

[|ECSMA
[OFwp

PSFQ PSFQ

(a) PSFQ delivery success
rate.

(b) PSFQ cost.

Figure 11: Delivery success rate and cost of PSFQ on
top of standard CSMA and FWP. FWP increases the
delivery success slightly (3%) with a an accompany-
ing increase in cost (3%).

= 300
R 0.8 7 fg\il":’** 250 -
L0671 — 3200 -
204 { | | mcsma

OrFwp

0.2

Time (s) Trickle

(a) Trickle
latency.

delivery (b) Trickle cost.

Figure 12: Trickle propagation rate using standard
CSMA and FWP. The distribution of delivery laten-
cies is for all nodes in ten separate trickle events (400
data points).

Figure[9]shows how ARC performs. For the configura-
tion in Table[d] using FWP increases the goodput of ARC
by 23-30% and reduces the cost per goodput packet by 5-
10%. We explored a range of quiet times and transmis-
sion intervals. At very low rates, CSMA and FWP per-
formed similarly. At very high rates (e.g., inter-packet in-
tervals of 10ms, where the network generates 4000 pack-
et/s), CSMA outperforms FWP. This occurs because the
few nodes close to the base station are completely over-
loaded and stop routing packets; just send as quickly
as they can. In this circumstance, a quiet time of 6ms
merely reduces network capacity.

Figure shows ARC’s goodput over a five minute
interval. Using CSMA, ARC swings between 8 and 16
packets per second. Using FWP, its rate is more regu-
lated, and except for an early dip in rate it stays close to
12 packets per second. Using FWP, ARC’s rate control
is more stable. 12 packets per second, however, is well
below network capacity.

The effect of ARC’s rate control on other protocols can
be see in Figure [T} which shows the results for PSFQ.
Using FWP increases the reliability of PSFQ by 3% at
a 3% increase in cost. By applying rate control, ARC
is not saturating the channel, and so PSFQ can perform
reasonably well. FWP allows PSFQ to catch a few extra
stragglers. Figure [2] shows the results for Trickle. Un-
der CSMA and FWP Trickle behaves almost identically:
FWP sends 5% more packets.

Figure shows the queue latency distributions for
ARC, Trickle, and PSFQ. Quiet times introduce much
higher queue latencies for ARC and PSFQ, which are
sending approximately 50 and 20 packets per second,
respectively. In contrast, Trickle, which sends approx-
imately 20 packets per minute, has FWP queue laten-
cies equivalent to those of CSMA. These queue latencies
can also explain why PSFQ sends more packets; they are
larger than PSFQ’s random jitter in responses to NACK
packets, so the chances that two nodes respond at the

N
s)
N
&
3

N
S
S

@
S

BWCSMA ECSMA

8 r

6 mFWP L @EFwp
sl F

2

0 L ———

ARC1 ARC2 PSFQ Trickle ARC1 ARC2 PSFQ Trickle
Protocol Protocol

Mean Queue Latency (ms)
«
g

Max Queue Latency (m:
=
)
3

)

(a) Mean latency. (b) Maximum latency.
Figure 13: Queue latencies for the four protocols. Be-
cause they use the channel most, ARC packets have
to wait longest in queues. The average and worst
case queue latencies of Trickle packets, in contrast,
are within 100.s of each other. FWP favors protocols
which use less than their fair share.

same time goes up. Even though ARC has higher queue
latencies (the maximum is 28ms for CSMA and 228ms
for FWP), FWP improves both goodput and efficiency.

These improvements are smaller than we had hoped
for: the large amount of work in fair rate control 5} [24}
36] suggests that self-interference and inter-protocol in-
terference are significant problems in sensornets. How-
ever, considering the protocols we used, the reason why
FWP did not meet our expectations is obvious with hind-
sight: these are well designed protocols that take active
measures to avoid these problems using through rate con-
trol and suppression. ARC, for example, adjusts its uti-
lization of the channel to be low enough that the network
does not approach saturation, unless the load is so high
that it devolves into a single-hop network. Although the
network is generated 40 packets/s, the base stations re-
ceives 7-9 packets per second.

5. Related Work

While fair queueing algorithms are generally ambiva-
lent on what division they provide fairness over, in In-
ternet systems it is typically an IP flow (node/node/port)
or just a node pair. In wired systems, fair queueing is
a local problem: a node has a dedicated channel that it
can use as it sees fit. The medium inherently isolates
separate nodes from interfering. In a landmark paper,
Demers et al. showed a system can fairly queue in the
wired case with the very simple algorithm [4]], which
FWP adapts to the low-power wireless domain. For high-
capacity routers, per-packet processing costs are a sig-
nificant concern, leading to a series of subsequent al-
gorithms [28} [30]] that trade off precision for efficiency.
In sensornets, the processing/communication tradeoff is
reversed, as CPUs are mostly idle [27]], simplifying the
problem and making accurate algorithms feasible.

One challenge wireless networks pose is that several

nodes share the channel being allocated, and this rela-
tionship is neither binary nor symmetric. As each node
may be servicing a different number of flows, the simple
MAC-level node fairness can be a liability. Vaidya et al.
showed one way to resolve this tension in a distributed
fashion, making CSMA backoff inversely proportional
to a flow’s channel use [31]. As the authors note, that
the fairness of this approach degrades with packet loss,
and it is designed for a single- rather than multi-hop net-
work. When many nodes participate in the fairness unit
(e.g., a protocol), then the shared channel allocation state
is further distributed.

MAC layers encounter channel allocation challenges
as a matter of course. In RTS/CTS, for example, a node
requests permission to transmit. For traffic loads of large
bursts of traffic, this control overhead can be amortized
over many data packets. For small bursts, as is often the
case in sensornets, a hidden terminal in the RTS/CTS are
just as pronounced, limiting its utility. Furthermore, as
noted by MACAW, RTS/CTS has edge cases that lead
to inefficient use of the channel [[1]]. These issues have
prevented SMAC [39], although the first MAC designed
specifically for sensornets, to have limited use. Instead,
systems commonly use BMAC, a simple CSMA MAC
layer with optional low-power listening [21].

In the context of sensor networks, one multihop proto-
col that fits well into a node-based or flow-based account-
ing approach is collection [38]]. Collection protocols de-
liver data from every node in a network to one or more
collection roots or base stations. Because nodes form a
tree, shallow nodes can receive an unfairly large share
of the endpoint bandwidth. Algorithms to provide fair-
ness in these circumstances [5, 24, [36|] are complimen-
tary to this paper; they provide inter-node fairness within
a protocol, and benefit from a lower layer that provides
inter-protocol fairness across nodes.

The FPS protocol and its successor, Twinkle, use ex-
plicit slot allocation to schedule flows up a collection
tree [10]. Using explicit slot allocation allows FPS to
greatly reduce energy consumption, as nodes can remain
asleep for unused slots. Additionally, as it allocates en-
tire flows from source to sink, can control how much
of its incoming bandwidth is given to each child and
provide network-level fairness. FPS demonstrates that a
dedicated network with a single network protocol can be
heavily optimized through explicit reservation. In con-
trast, FWP takes an ad-hoc and opportunistic approach,
allocating the channel as it is needed. The distinction be-
tween the two approaches is akin those between virtual
circuit and wormhole routing [3[] in parallel architectures
or virtual circuits and packet switching in IP networks,
with similar tradeoffs between state, control overhead,
and flexibility.

As sensornet applications grow in complexity, so does

the need for effective integration. The SP programming
abstraction [22] proposes two software mechanisms, a
send pool and a neighbor table, to decouple network pro-
tocol implementations while simultaneously allowing an
OS to couple their traffic. The goal of SP is to max-
imize how efficiently a node OS can use its local re-
sources, e.g., by sending rapid bursts of packets. Decou-
pling network protocols so completely from transmission
scheduling, however, precludes certain effective mecha-
nism such as network-level rate control. SP and FWP
seek the same goal, but take opposite approaches: SP
optimizes below and leaves fairness to the layers above,
while FWP provides fairness below and leaves optimiza-
tions to the layers above.

6. Discussion and Conclusion

In dense networks where there is heavy traffic, FWP
improves network goodput and efficiency while enabling
multiple protocols to fairly and collaboratively share the
channel. However, these benefits do not come without
costs. In sparse networks, where interference is less of
an issue, FWP’s quiet periods and protocol penalties can
reduce network capacity. This is not surprising; in a net-
work with a single active protocol that needs to optimize
use of the channel, isolation mechanisms are unneces-
sary overhead.

The experiments in this paper used constant quiet times
derived from isolated traffic or protocol logic. These val-
ues are dependent on the radio hardware (packet times),
environment, and network topology. It therefore seems
likely that robust protocols built on top of FWP would
need to dynamically estimate this parameter, just as some
estimate transmission rates.

Grant-to-send is a significant departure from existing
approaches. In adversarial situations, or networks where
nodes have differing goals, this mechanism is counter-
intuitive. In a sensornet, however, where nodes are try-
ing to achieve a common goal (and are under a single
administrative domain), more altruistic approaches are
possible. It can be used to implement several forms of
network-scheduling. Section ff] showed how ARC could
use it express rate control to other protocols and how
PSFQ could use it to reserve its local channel for NACK
responses. A quiet time could also be used for bulk uni-
cast data transfer: the requester sends a large grant to
the provider, who can then send a large number of data
packets with quiet time 0.

FWP poses interesting questions for routing protocols.
If trying to optimize goodput, a protocol routing along a
path will try to control how far its quiet time reaches. A
quiet time that reaches two hops away and prevents rapid
forwarding is undesirable. Encoding flows — problematic
in sensornets, where not all traffic patterns are flows —

to control the set of nodes who do not have to obey a
quiet time could allow network protocols to make more
flexible routing decisions.

FWP takes no position on conserving energy. It as-
sumes that nodes can snoop on packets, but in the com-
mon case of very low traffic rates, it does not preclude
energy management techniques. However, as important
as energy is in sensornets, we believe that in this case it
should be the second, not the first, step. Successful sys-
tems and networking specifications such as files, threads,
and TCP have shown us that simple designs are flexible,
and flexible designs can be highly optimized later. Many
of the current approaches for network energy manage-
ment, such as communication scheduling [10} |17], are
only feasible in isolation as they assume complete con-
trol of the system. Therefore while they guide research
and our understanding towards better approaches, they
are difficult or impossible to apply in the general case,
especially in combination.

The tremendous challenges in developing sensornet ap-
plications, however — networking, systems, and other-
wise — have led to many system architectures with the
goal of development. SP [22] and the modular network
layer [6] propose programming abstractions. Tenet [9]
and EmStar [7] specify computational responsibilities.
These architectures have made developing applications
easier, but those applications are still vertically integrated
systems. We believe that sensornets also need an orthog-
onal effort to develop a network architecture which de-
fines how nodes communicate and the division of proto-
col responsibilities. The basis of such an architecture is
a “narrow waist” protocol, independent of any particu-
lar hardware or software platform, that allows multiple
multihop layers to operate independently but efficiently
share the channel [2]]. We believe FWP is a significant
step towards this goal.

Acknowledgements

We would like to thank Rodrigo Fonseca and Sukun Kim,
whose rate control research provided the inspiration for
FWP. We would like to thank Intel Research and Har-
vard University for providing networking testbeds to the
research community. This work was supported by gener-
ous gifts from the Intel Corporation and Docomo Capital,
a scholarship from the Samsung Lee Kun Hee Scholar-
ship Foundation, the National Science Foundation under
grant #0615308 (“CSR-EHS”), and a Stanford Terman
Fellowship.

7. REFERENCES

[1] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. MACAW: Media
access protocol for wireless lans. In In Proceedings of the ACM
SIGCOMM Conference, 1994.

[2]

3

[4

[5]

[6]

[7

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

D. Culler, P. Dutta, C. T. Ee, R. F. andJonathan Hui, P. Levis, J. Polastre,
S. Shenker, I. Stoica, G. Tolle, and J. Zhao. Towards a sensor network
architecture: Lowering the waistline. In Proceedings of the Tenth
Workshop on Hot Topics in Operating Systems (HotOS-X), 2005.

W.J. Dally and C. L. Seitz. The torus routing chip. Distributed
Computing, 1(4):187-196, 1986.

A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithm. In SIGCOMM ’89: Symposium proceedings on
Communications architectures & protocols, pages 1-12, New York, NY,
USA, 1989. ACM Press.

C. T. Ee and R. Bajcsy. Congestion control and fairness for many-to-one
routing in sensor networks. In SenSys '04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages
148-161, New York, NY, USA, 2004. ACM Press.

C.T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli, D. Culler, S. Shenker,
and I. Stoica. A modular network layer for sensornets. In Proceedings of
the ACM Symposium on Operating System Design and Implementation
(OSDI), 2006.

L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin,

E. Osterweil, and T. Schoellhammer. A system for simulation, emulation,
and deployment of heterogeneous sensor networks. In Proceedings of the
2nd international conference on Embedded networked sensor systems
(SenSys), pages 201-213, New York, NY, USA, 2004. ACM Press.

O. Gnawali. Private communication, 2006.

0. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Pack, M. Vieira,

D. Estrin, R. Govindan, and E. Kohler. The TENET architecture for tiered
sensor networks. In Proceedings of the ACM Conference on Embedded
Networked Sensor Systems (Sensys), 2006.

B. Hohlt, L. Doherty, and E. Brewer. Flexible power scheduling for sensor
networks. In Proceedings of the Third International Symposium on
Information Processing in Sensor Networks, Berkeley, CA, Apr. 2004.

J. W. Hui and D. Culler. The dynamic behavior of a data dissemination
protocol for network programming at scale. In SenSys '04: Proceedings of
the 2nd international conference on Embedded networked sensor systems,
pages 81-94, New York, NY, USA, 2004. ACM Press.

B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating congestion in
wireless sensor networks. In SenSys *04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages
134-147, New York, NY, USA, 2004. ACM Press.

C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva.
Directed diffusion for wireless sensor networking. IEEE/ACM Trans.
Netw., 11(1):2-16, 2003.

R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness and
discrimination for resource allocation in shared computer systems.
Technical Report TR-301, DEC Research, 1984.

P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-regulating
algorithm for code maintenance and propagation in wireless sensor
networks. In First USENIX/ACM Symposium on Network Systems Design
and Implementation (NSDI), 2004.

S. Lu, V. Bharghavan, and R. Srikant. Fair scheduling in wireless packet
networks. In SIGCOMM ’97: Proceedings of the ACM SIGCOMM 97
conference on Applications, technologies, architectures, and protocols for
computer communication, pages 63—74, New York, NY, USA, 1997. ACM
Press.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: An
acquisitional query processing system for sensor networks. Transactions
on Database Systems (TODS), 2005.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a Tiny
AGgregation Service for Ad-Hoc Sensor Networks. In Proceedings of the
ACM Symposium on Operating System Design and Implementation
(OSDI), Dec. 2002.

M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time
synchronization protocol. In SenSys '04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages
39-49, New York, NY, USA, 2004. ACM Press.

J. Newsome and D. Song. Gem: graph embedding for routing and
data-centric storage in sensor networks without geographic information. In
Proceedings of the first international conference on Embedded networked
sensor systems, pages 76-88. ACM Press, 2003.

J. Polastre, J. Hill, and D. Culler. Versatile low power media access for
wireless sensor networks. In Proceedings of the Second ACM Conferences
on Embedded Networked Sensor Systems (SenSys), 2004.

J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica. A
unifying link abstraction for wireless sensor networks. In SenSys *05:
Proceedings of the 3rd international conference on Embedded networked
sensor systems, pages 76-89, New York, NY, USA, 2005. ACM Press.

K. K. Ramakrishnan and H. Yang. The ethernet capture effect: Analysis
and solution. In Proceedings of the IEEE 19th Local Computer Networks

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[39]

Conference, Oct. 1994.

S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis.
Interference-aware fair rate control in wireless sensor networks. In
SIGCOMM °06: Proceedings of the 2006 conference on Applications,
technologies, architectures, and protocols for computer communications,
pages 63-74, New York, NY, USA, 2006. ACM Press.

I. Rhee, A. Warrier, M. Aia, and J. Min. Z-MAC: a hybrid mac for wireless
sensor networks. In SenSys '05: Proceedings of the 3rd international
conference on Embedded networked sensor systems, pages 90-101, New
York, NY, USA, 2005. ACM Press.

C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry, and

D. Culler. Design and implementation of a sensor network system for
vehicle tracking and autonomous interception. In Proceedings of the
Second European Workshop on Wireless Sensor Networks (EWSN), 2005.
V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and M. Welsh.
Simulating the power consumption of large-scale sensor network
applications. In SenSys '04: Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 188-200, New
York, NY, USA, 2004. ACM Press.

M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round
robin. In SIGCOMM ’95: Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communication,
pages 231-242, New York, NY, USA, 1995. ACM Press.

K. Srinivasan, P. Dutta, , A. Tavakoli, and P. Levis. Understanding the
causes of packet delivery success and failure in dense wireless sensor
networks. Technical Report SING-06-00, 2006.

S. Suri, G. Varghese, and G. Chandranmenon. Leap forward virtual clock:
a new fair queuing scheme with guaranteed delays and throughput
fairness. In PODC ’97: Proceedings of the sixteenth annual ACM
symposium on Principles of distributed computing, page 281, New York,
NY, USA, 1997. ACM Press.

N. H. Vaidya, P. Bahl, and S. Gupta. Distributed fair scheduling in a
wireless lan. In MobiCom *00: Proceedings of the 6th annual international
conference on Mobile computing and networking, pages 167-178, New
York, NY, USA, 2000. ACM Press.

T. van Dam and K. Langendoen. An adaptive energy-efficient MAC
protocol for wireless sensor networks. In Proceedings of the First ACM
Conference on Embedded Networked Sensor Systems, Los Angeles, CA,
Nov. 2003.

C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy. PSFQ: a reliable
transport protocol for wireless sensor networks. In Proceedings of the 1st
ACM international workshop on Wireless sens or networks and
applications, pages 1-11. ACM Press, 2002.

L. Wang. MNP: multihop network reprogramming service for sensor
networks. In SenSys '04: Proceedings of the 2nd international conference
on Embedded networked sensor systems, pages 285-286, New York, NY,
USA, 2004. ACM Press.

G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: a wireless
sensor network testbed. In IPSN '05: Proceedings of the 4th international
symposium on Information processing in sensor networks, page 68,
Piscataway, NJ, USA, 2005. IEEE Press.

A. Woo and D. E. Culler. A transmission control scheme for media access
in sensor networks. In Proceedings of the seventh annual international
conference on Mobile computing and networking, Rome, Italy, July 2001.
A. Woo and T. Tong. Tinyos mintroute collection protocol.
tinyos-1.x/lib/MintRoute.

A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of
multihop routing in sensor networks. In Proceedings of the First ACM
Conference on Embedded Networked Sensor Systems, Los Angeles, CA,
Nov. 2003.

W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for
wireless sensor networks. In In Proceedings of the 21st International
Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM 2002), New York, NY, June 2002.

	Introduction
	The Fair Waiting Protocol
	Motivation
	GTS and FWP Overview
	FWP Details

	Abstract Loads
	Fairness and Isolation
	Uniform Lossless Load
	Isolation and CSMA
	Uniform Load with Loss
	Varied Load
	Multihop Fairness

	Real Loads
	Complete FWP
	Real Traffic Loads
	Network Protocols
	Experimental Setup
	Multi-protocol Results

	Related Work
	Discussion and Conclusion
	REFERENCES -9pt

