Fair Waiting Protocol: Achieving Isolation in Wireless Sensornets

Jung Il Choi
Computer Systems Lab
Stanford University

Fair Waiting Protocol (FWP)

Objective

- To simplify sensornet's complicated network behavior
 by cutting the interactions between network protocols
- To prevent Inter-protocol Interference
- Two properties
 - Isolation by Grant-to-send
 - Fairness by Fair Queueing

Grant-To-Send

- Puts a quiet time(1B) on every packet
- Transmitter and overhearer should be quiet during the q

Fair Queueing

Channel Occupancy of protocol P (T_P)

+= Quiet Time (Q) + TX Time

- When multiple packets are pending, transmits a packet fr om the protocol with minimum T
- Protocol Penalty
 - CSMA enforces fairness across nodes
 - favors protocols with more senders
 - Small penalty wait before starting CSMA according to T_P/min{T}

Issues on Grant-To-Send

- How bad links will change performance of FWP and the optimal quiet time?
- Different topologies, e.g. star topology, with multiple flows

Ping-Pong Effect

P1	P2
T+2	T+2
0	2

- Can be caused by packet losses
- Solution: Periodically decaying channel usage values
 - Experiments shows different optimal decaying period for different traffic patterns, but not sure why
 - Need to understand which factors decides the optimal period and how

Bigger Picture

- What we want :
 - independently reliable operation of co-existing multiple e protocols
- What we need :
 - Adaptive quiet time selection mechanism
 - Depends on topology, traffic patterns, link qualities, radio chi ps, CSMA parameters, etc.
 - Network protocols must adjust the quiet times
 - Improvements on Grant-to-send