Inverting Wireless Collision Avoidance

Technical Report SING-09-00

Jung Il Choi, Mayank Jain, Maria A. Kazandjieva, and Philip Levis
Computer Systems Laboratory, Stanford University, Stanford, CA

Abstract

We describe grant-to-send, a novel collision avoidance al-
gorithm for wireless mesh networks. Rather than announce
packets it intends to send, a node using grant-to-send an-
nounces packets it expects to hear others send.

We present evidence that inverting collision avoidance in
this way greatly improves wireless mesh performance. Eval-
uating four protocols from 802.11 meshes and 802.15.4 sen-
sor networks, we find that grant-to-send matches or outper-
forms CSMA and RTS/CTS in all cases. For example, in
a 4-hop UDP flow, grant-to-send can achieve 96% of the
theoretical maximum throughput while maintaining a 99.9%
packet delivery ratio. We also find that grant-to-send is gen-
eral enough to replace protocol-specific collision avoidance
mechanisms common to sensor network protocols.

Grant-to-send is simple. Incorporating it into 802.11 re-
quires only 11 lines of driver code and no hardware changes.
Furthermore, as it reuses existing 802.11 mechanisms, grant-
to-send interoperates with current networks and can be in-
crementally deployed.

1. INTRODUCTION

Collisions are a significant design challenge for wireless
mesh protocols. Traditionally, wireless MAC layers improve

collision avoidance by trading off throughput. Simple schemes

such as CSMA/CA introduce very little throughput over-
head, but exhibit significant collisions under load. More
complex schemes, such as RTS/CTS, avoid collisions better
but reduce throughput when there is no contention. In prac-
tice, this tradeoff has led mesh protocol designers to choose
CSMA [15} [25] and deal with the challenges collisions in-
troduce, such as highly variable and severe packet loss [9].

More recently, network coding at the physical layer has
emerged as a way to sidestep the tradeoff between collision
avoidance and throughput. Approaches such as analog net-
work coding [23|] or ZigZag decoding [20] have shown that
nodes can recover collided packets using simple signal pro-
cessing and redundant information. The downside of these
approaches is that they require new chipsets and hardware:
they cannot be easily deployed in existing networks.

Can we improve collision avoidance without sacrificing
throughput or requiring new hardware? Given the maturity

of research in collision avoidance, a positive answer might
seem unlikely. The sheer number of CSMA/CA backoff
schemes [10} |13} |14, {16l 31]] and RTS/CTS variations [[7,
8L 111} 21}, 132, |35]] implies that the problem has been put to
rest, suggesting the only way forward is through better signal
processing, cross-layer optimizations, and network coding.

This paper presents evidence to the contrary. It shows that
inverting collision avoidance’s information flow can signifi-
cantly reduce collisions without lowering throughput. More
precisely, this paper proposes grant-to-send (GTS), a novel
collision avoidance primitive. Grant-to-send “inverts” colli-
sion avoidance because a grant announces what a node ex-
pects to hear other nodes transmit. It embeds its collision
avoidance information in data packets, and so uses no con-
trol packets.

When sending a packet, a node may specify an interval
for which it “grants” its local channel to the recipient. The
granter and all overhearing nodes remain silent for this in-
terval. A grant allows the recipient to transmit without caus-
ing collisions at the granting node. Grants are a suppression
mechanism: they are not a precondition for transmission.
If all grants are zero, grant-to-send behaves identically to
CSMA.

Grants do not protect the packet they are in: they avoid
collisions between future packets sent by other nodes.

Long grants avoid collisions but reduce throughput through
channel idleness. Short grants do not waste the channel but
suffer from more collisions. So how long should a grant be?
To answer this question, we derive an analytical expression
of grant-to-send’s behavior. The analysis shows that a grant
should be as long as node expects the recipient to use the
channel. Simulation and testbed results support this analy-
sis. For example, in the case of a UDP or TCP flow, the
optimal grant is a packet time, long enough for the next hop
to forward. We examine how complications such as broad-
cast protocols, variable bit rates, and link-layer retransmis-
sions affect this rule. In cases where the optimal grant is not
known, we present simple conservative heuristics that select
the optimal grant 98.8% of the time.

We evaluate grant-to-send by examining four different pro-
tocols from two network regimes, 802.11 meshes and 802.15.4
sensor networks. We measure the performance benefits over

traditional approaches such as CSMA/CA and RTS/CTS. This
paper makes five research contributions:

e [t presents the design of grant-to-send, a novel collision
avoidance mechanism. Using simulation and testbed
experiments as a guide, it derives an analytical formu-
lation of grant-to-send’s behavior and performance.

e Grant-to-send matches or outperforms the throughput
and delivery ratio of CSMA and RTS/CTS for all pro-
tocols in all testbed and simulation cases. For example,
in a 4-hop route, grant-to-send increases UDP through-
put by up to 23%, achieving 96% of the maximum pos-
sible throughput, while simultaneously reducing end-
to-end losses by >95%. In 4 hop routes, grant-to-send
increases TCP throughput by 48%.

o Contrary to common wisdom in existing literature [[15]
17, [25]], CSMA is not always superior to RTS/CTS:
RTS/CTS’s UDP throughput is up to 38% higher for
flows longer than 3 hops.

o Self-interference can be a bottleneck to TCP perfor-
mance. Reducing interference with grant-to-send and
other mechanisms brings TCP’s throughput on a 4-hop
route to within 86% of UDP’s.

e Grant-to-send is general enough to implement and re-
place existing collision avoidance mechanisms in sen-
sor network protocols with no loss of performance.

Grant-to-send can reuse existing 8§02.11 MAC protocol
mechanisms, such that it is completely interoperable with
existing CSMA and RTS/CTS networks. This interoperabil-
ity enables grant-to-send nodes to be incrementally deployed
with an 11-line change to existing 802.11 drivers.

The next section provides background on wireless colli-
sion avoidance. Section [3]presents grant-to-send and details
two implementations (802.11 and 802.15.4). Section [4] an-
alyzes grant-to-send’s behavior and provides guidance for
how long grants should be. Sections [5H8] explore and eval-
uate grant-to-send for a variety of network protocols. Sec-
tion [9] discusses limitations of the mechanism. Section
presents prior related work and Section [TT]concludes.

2. WIRELESS COLLISIONS

A wireless collision occurs when a node receiving a packet
hears one or more additional transmissions strong enough to
corrupt the current reception. Collisions introduce two ma-
jor problems. First, they are a waste of the wireless channel
and harm throughput. Second, as the collision rate depends
on the traffic load, they introduce load-based dynamics into
observed link qualities, such that increasing load reduces
throughput as well as end-to-end delivery.

This section describes CSMA, the standard MAC proto-
col used in wireless meshes, as well as the hidden terminal
problem, a major cause of collisions. It revisits prior ob-
servations that a flow can exhibit significant self-collisions
due to the hidden terminal, and discusses why existing mesh

A I:ﬂ
O
2
| B YCOLLISION
|
)
| C
D
v

>
>

Time

7] csmA Backoff [l Transmission

Figure 1: The hidden terminal problem in a simple flow.
Node A must wait for node C to forward a; before trans-
mitting as, or both will collide at node B.

> T ' —
é 1.0 End-to-End Delivery 1.0 8
= Ko}
g 0.8 0.8 E
o 0.6 0.6 é
Wo.4 0.4 5
3)
-g 0.2 Throughput 0.2 E
Yoot00
0.1 1 10

Data Load (Mbps)

Figure 2: The effect of the hidden terminal problem
within a single CSMA flow. When load passes the thresh-
old the path can sustain, self-interference becomes sig-
nificant and the delivery ratio drops accordingly. Fur-
thermore, throughput also drops: sending more packets
causes fewer packets to arrive.

protocols typically use CSMA rather than another collision
avoidance scheme, RTS/CTS.

2.1 CSMA/CA and Hidden Terminals

CSMA collision avoidance is weak but inexpensive. In
a CSMA/CA layer, a transmitter decides when to send by
sensing the state of its channel. If its local channel is busy,
it assumes the channel is busy at the receiver as well and
does not transmit. CSMA/CA is simple to implement and
has little overhead: nodes sense the channel and transmit.

This leads to the hidden terminal problem. The hidden
terminal problem happens when two nodes that cannot hear
each other (are “hidden”) transmit at the same time. A third
node hearing both transmissions receives neither because they
collide. The hidden terminal problem is common in real-
world wireless meshes and is a dominant source of packet
losses especially with CSMA [18]].

Figure [I] shows a basic example along a route in a mul-
tihop network, where packets self-collide due to the hidden
terminal problem. Node A and node C cannot hear each
other, so their transmissions collide at node B. This behavior

Bitrate CSMA RTS/CTS Overhead
1 Mbps 0.79 0.76 4.0%
2 Mbps 1.44 1.35 6.6%
5.5 Mbps 3.36 2.89 14.1%
11 Mbps 5.89 4.42 25.1%

Table 1: Single-hop throughput (Mbps) on a high quality
802.11b link. RTS/CTS overhead ranges from 4-25%.

is well-known, and in the best case bounds a flow’s through-
put to one third of the single-hop throughput [39]], as a node
must wait for a packet to progress out of interference range
before transmitting the next one.

Figure 2] shows this effect experimentally in a single flow
in an 802.11b mesh testbed. Sectiond.1|provides greater de-
tails on the experimental setup, but in summary, one node
sends UDP traffic along a static 4-hop route with a fixed
bitrate of 5.5Mbps. As the data rate surpasses the path’s
capacity, the end-to-end delivery ratio and throughput drop
due to collisions. This experiment validates earlier simula-
tion results by Li et al. [29] and Vyas et al. [36] that pushing
a path beyond what it can support increases collisions and
reduces performance. The plots flatten at 3.0 Mbps because
link layer queuing prevents sending faster.

2.2 RTS/CTS

RTS/CTS avoids collisions through a control packet ex-
change before each data packet. The transmitter sends a
request-to-send (RTS) to the intended receiver, describing
how long it wishes to transmit for. The receiver replies with
a clear-to-send (CTS) packet if it thinks its channel will be
clear. Nodes around the receiver hearing the clear-to-send
remain quiet, avoiding the hidden terminal problem. How-

ever, as RT'S/CTS avoids control packet collisions with CSMA,

CTS packets can be lost through collisions with other con-
trol packets. These losses cause RTS/CTS to have hidden
terminals, albeit fewer than CSMA [34].

Pushing collisions to the control exchange improves the
data delivery ratio. This improvement has a cost: a data
packet requires a control packet exchange, reducing through-
put. In practice, many protocol designers have found that
RTS/CTS’s costs outweigh its benefits [[17,25], and AP ven-
dors suggest disabling it [2} 4].

To quantify this cost, we measure UDP throughput be-
tween two nearby 802.11b nodes. In this experimental setup,
the packet drop rate and collision rate are very low. The RT-
S/CTS exchange is pure overhead. Table[T]shows the results.
RTS/CTS overhead is 4-25%. The overhead increases with
the bitrate because data packets at higher bitrates are faster,
but the fixed-duration control packets sent at 1 or 2 Mbps
consume a larger portion of the packet exchange time.

2.3 Summary

Intra-flow collisions from the hidden terminal problem cause

UDP throughput to drop under high load, as CSMA has no
knowledge about future transmissions and so cannot avoid
them. RTS/CTS, in contrast, avoids more collisions, but is
costly when collisions are rare. Protocols today therefore
trade off between two goals:

Throughput: when collision opportunities are rare, the net-
work should be able to use the complete link throughput as
effectively as CSMA.

Collision avoidance: layer 3 protocol metrics, such as through-

put and end-to-end delivery, should not decrease when colli-
sion opportunities are common.

Is it possible to get the best of both worlds? Such a pro-
tocol would avoid collisions when there is contention, yet
impose no overhead when collisions are rare. One answer
might be to use a hybrid approach, switching between CSMA
and RTS/CTS based on circumstances. But such an approach
would add further complexity to networks that are already
poorly understood and hard to troubleshoot. The next sec-
tion proposes an alternative approach: grant-to-send, a sim-
ple protocol that simultaneously achieves both goals as well
as or better than RTS/CTS and CSMA.

3. GRANT-TO-SEND

Give every man thy ear, but few thy voice.
Hamlet, Act I, Scene iii

This section provides an intuitive and formal description
of grant-to-send. Through a simple example of a flow, it il-
lustrates how grant-to-send avoids collisions. Later sections
examine more complex protocol interactions. The section
concludes with details on the two implementations (802.11
and 802.15.4) we use in the rest of the paper.

3.1 Intuitive Description

Grant-to-send’s primitive is simple. When a node sends a
packet, it can tell nodes around it to be quiet so they do not
collide with the recipient’s future transmission. For unicast
routing, that transmission is to forward the received packet.
Given an estimate of what a recipient will do in response to a
transmission, a node shares this information with neighbors
to help them avoid collisions.

Grant-to-send sits on top of a CSMA/CA layer providing
local node fairness and basic single-hop collision avoidance.

3.2 Formal Description

Each node 7 maintains a local quiet time ¢;, which states
the point in time when channel grants end and it may send
a packet. The variable ¢; refers to the current time on ¢’s
clock. When node ¢ overhears or transmits a grant-to-send
packet with a grant of length g, it extends its quiet time to
maz(q;, t; + g). A packet’s recipient considers g to be zero.
While ¢; > t;, a node assumes the channel is busy. If ¢; <
t;, then a node transmits using the underlying CSMA layer.
A grant recipient may be unable to transmit immediately:

A
U A
2
Iy B
3 A
o
= C
D
v

>
>

Time

[Backoff [l TX[__] GTS Suppression

Figure 3: A packet flow using grants slightly longer than
a packet time. The grants avoid intra-flow collisions by
forcing nodes to wait until a forwarded packet clears the
channel of their next hop.

outstanding grants to other nodes can make g; > t;.

For a transmitter, ¢; is when the last bit is sent. For a
receiver, t; is when the last bit is received. As propagation
time is typically below 1us, the difference in timing between
the two is irrelevant in practice.

If all packets have g = 0, then it is always the case that
q; < t;: grant-to-send does not affect packet scheduling or
timing and behaves identically to CSMA.

3.3 Avoiding Collisions

Figure[I|shows how the hidden terminal problem causes a
packet flow to self-interfere. Figure 3] shows the same flow
using grant-to-send where grant durations are slightly longer
than one packet time. There are no intra-flow collisions.

The example begins with Node A granting B its chan-
nel. This grant prevents A from transmitting for a single
packet time, and so B does not have to compete with A for
channel access. B forwards the packet collision-free to C.
This packet, in turn, grants B’s channel to C. A hears the
grant from B to C and extends its quiet time. C forwards the
packet, granting its channel to D. As B overhears this grant,
it extends its quiet time. Node A’s quiet time, however, has
expired, so it can now transmit to B.

Every time A transmits a packet to node B, it waits just
over two packet times before transmitting again: the first
from its own grant and B’s transmission, the second from
B’s grant. Grant-to-send enforces the basic rate limiting (one
third) needed in multihop flows. The last hop in a flow has
a grant of zero, as it does not expect a retransmission, so
grant-to-send does not force idleness on shorter flows.

This example makes many simplifying assumptions: it as-
sumes that the interference range is the same as the transmit
range, that there is a single transmitter in a unicast flow, and
that a granter somehow knows the correct grant duration for
the next hop. We relax these assumptions in later sections by
examining how grant-to-send affects four different protocols
on testbeds with two different link layers. Before we delve

into these results, however, the next two subsections describe
the practical considerations in the two implementations we
use to evaluate grant-to-send : 802.11 and 802.15.4.

3.4 Grant-to-send in 802.11

The 802.11 duration header field states the expected length
of the current packet exchange between two nodes in terms
of microseconds. For example, an 802.11 data packet’s du-
ration is the length of an ACK response, while an 802.11
request-to-send packet states the expected length of the CTS-
DATA-ACK exchange. Nodes can assume the channel is
busy during duration intervals without sensing the channel.

The 802.11 duration field is similar to a grant, but differs
in mechanism and use. As a mechanism, the duration field
does not suppress a transmitter, so that a node can trans-
mit data after an RTS. Grant-to-send, in contrast, suppresses
transmitters. In terms of use, 802.11 uses the duration field
to state the duration of future transmissions between the com-
municating pair, while in grant-to-send it to state the dura-
tion of future transmissions to any destination.

Implementing grant-to-send requires two modifications to
existing 802.11 drivers. First, the driver must place grant in-
tervals into the duration field. Second, the driver must sup-
press packet transmitters. We modified current MadWifi [3]]
and ath9k [1]] drivers to provide grant-to-send on Atheros-
based 802.11b/g and 802.11b/g/n cards. All of the experi-
ments in Section [3] and Section [7] use the MadWifi driver;
modifying the ath9k driver was similarly easy.

Putting grants into the duration field requires 4 lines of
code to calculate a grant duration and place it in the duration
field. Suppressing transmitters requires modifying the inter-
rupt handler for transmission completion. Wireless chipsets
store how long they should remain quiet based on duration
fields in a variable called the network allocation vector (NAV).
The modified interrupt handler writes the grant duration to
the NAV register when an acknowledged transmission com-
pletes, causing a transmitter to observe the grant. Chang-
ing the interrupt handler requires 7 lines of code, for a total
of 11 changed lines in each driver. Because grant-to-send
uses the duration field and NAYV, existing 802.11 nodes re-
spect the grants that they hear and grant-to-send respects RT-
S/CTS exchanges. We defer discussing how a routing layer
addresses 802.11’s variable bitrates to Section[3

3.5 Grant-to-send in 802.15.4

802.15.4 is a low-power link layer that operates in the
same 2.4GHz band as 802.11b/g. The maximum transfer
unit, including header, is 127 bytes, with a bitrate of 250Kbps.
The packet header has no analogue to 802.11°s duration field.
Supporting grant-to-send requires inserting a one-byte header
between layer 2 and layer 3.

We implemented grant-to-send on the Telos [33]] and Mi-
caZ sensor nodes running TinyOS [28]] version 2.0.2. Both
platforms have a TI/ChipCon 2420 (CC2420). Because CC2420
hardware acknowledgments preclude overhearing packets des-

1.0 End-to-end 0.9 i
[oX
2 o)
"(B' 08 ThvoughpuLO.S =
o ‘ =
> 0.6 ‘ 0.7 5
a | First hop SO_
2 0.4 ‘ 0.6 ©
a | 5
02 One Packet T * 0 _E
0.0 pN 0.4

CSMA 1 2 3 4 5
Grant duration (msec)

(a) A 5-node linear topology in a testbed.

1 0 End-to-end 2 O Py
. . v
2 [oy
% 0.8 Overall PRR 1.8 =
o =
>0.6 ! 16 5
v Throughput I E‘
2 0.4 i 14
Q 3
0 0.2 ! 12 =

0.0 One Packet T\mN‘ 1.0 [

0.00.51.01.52.02.5 3.0
Grant duration (msec)

(b) A 7-node linear topology in ns-2.

Figure 4: The effect of grant duration on UDP through-
put, link delivery and end-to-end delivery. In the testbed,
“first hop” is the link frame delivery ratio for the first
hop. Both exhibit two peaks, at the minimum grant in-
terval and at one packet time.

tined to other nodes, the implementation uses software ac-
knowledgments. The underlying CSMA layer is the stan-
dard TinyOS 2.0.2 CSMA layer. All experiments use the
Intel Mirage testbed [[19]], which has MicaZ nodes. MicaZ
nodes have a faster processor (7.3MHz vs IMHz) than Telos
and can sustain high I/O rates to the radio [28]].
Implementing grant-to-send requires adding a single-byte
header that specifies a grant duration in milliseconds. One
byte header limits grant durations to 255ms. Grant-to-send
itself is approximately 50 lines of TinyOS code. It requires
nine bytes of state for a timer that marks when ¢; expires.

3.6 Summary

Grant-to-send reverses the traditional information flow in
collision avoidance. When a node sends a data packet, it
can help others avoid collisions by granting its local channel
to the recipient. As grant-to-send requires no control pack-
ets, it does not impose the overhead typically observed with
RTS/CTS. Using a combination of testbed experiments and
simulation, the next section examines the effect of grant du-
rations on a UDP flow and derives an analytical formulation
of the effect of grant durations on throughput.

4. GRANT DURATION

Longer grants improve collision avoidance but shorter grants

have higher channel utilization. This raises the question:
how long is long enough for a grant? To answer this ques-
tion, we examine the most basic case of a multihop protocol,
a single UDP flow with a static bitrate.

4.1 Small Testbed

To experimentally determine the best grant duration, we
deploy a seven-node 802.11b/g testbed in our building’s hall-
ways. All 802.11 nodes in this paper are PCEngines ALIX.3C
boards, with an AMD Geode CPU, 128MB RAM and a 2GB
CF card. They have Compex WLM54GP23 802.11b/g cards
with Atheros chipsets and dual antennas. The nodes run
OpenWRT, a build of Linux 2.6.25-17. The 802.11 stack
has a maximum link retransmission count of 4.

In this experiment, each node uses a fixed 5.5Mbps bitrate
and runs on channel 1, which was cleared for the purposes
of the experiment. A few wireless APs in nearby buildings
within reception range remain on channel 1. We use 5.5
Mbps because it is the highest bitrate that our logging fa-
cility permits. The routing layer uses the standard Roofnet
distribution of Srcr [5], implemented using Click [27]. The
source has a reasonably stable but not static route to the gate-
way that is typically 4 hops. We run iperf for 90 seconds with
a payload of 1470 bytes to measure UDP’s performance. Be-
cause the last hop does not expect the destination to transmit
wirelessly, it always specifies a grant of zero.

We use three metrics to evaluate the effect of grant-to-
send. Throughput is the rate at which UDP delivers data.
End-to-end is the percentage of transport-layer segments that
arrived at the destination. This metric is important as many
higher layer protocols, such as TCP, respond to end-to-end
loss. First hop is percentage of link-layer frames that arrived
successfully at the first hop. In this case retransmissions via
ARQ are considered separate frames and end-to-end deliv-
ery is higher than first hop due to ARQ. The first-hop metric
is important because of its effect on mesh routing protocols;
packet losses imply self-interference.

Figure 4(a)| shows the results. CSMA sustains a through-
put of 0.62 Mbps while having an end-to-end delivery ratio
of 81%. A small grant of 500 us increases throughput to
0.85 Mbps, a 37% improvement. End-to-end delivery ratio
increases 98.8%, reducing losses by 94%.

Increasing the grant past 500 us decreases throughput un-

til it reaches 3 ms, at which point throughput jumps to 0.84Mbps,

well within the error of the throughput at 500 ps. Further-
more, a grant of 3 ms has an end-to-end delivery ratio of
>99%, a >95% reduction in losses over CSMA and a 31%
reduction over a 500 us grant.

3 ms is the expected transmit time of a 5.5 Mbps packet,
including CSMA backoff. A small grant greatly improves
throughput and end-to-end delivery; a grant of a single packet
time has the same throughput but even better end-to-end de-
livery. Intermediate values, while better than CSMA, are
inferior to these two grant durations.

Unlike throughput, first-hop delivery increases steadily with

A DZELZEH'I
O :
EJ'_ H
Y B COLLISION
a 4
3 :
H C
D
v

>
>

Time

[Backoff [l TX[__] GTS Suppression

Figure 5: A UDP flow using a short grant. A short grant
gives a forwarder CSMA priority over the first transmit-
ter, avoiding simultaneous transmissions. However, the
source still encounters the hidden terminal problem at
the first hop, and so has to transmit each packet twice.

larger grant durations. While CSMA has a first-hop delivery
ratio of 20%, a small grant boosts this to 32%, and a full
packet grant boosts it further to 42%. Increasing the grant
past 3 ms does not improve the chance that the first hop will
successfully receive a link-layer frame.

These results are from a single route in a somewhat con-
trolled wireless network. Blindly generalizing them to all
networks is dangerous. Instead, we turn to the repeatability,
control and visibility of simulation to understand the cause
of these peaks, and to see if they are fundamental or an ar-
tifact of the experimental setup. Simulation removes uncon-
trollable variables, such as external 2.4GHz interference.

4.2 Simulation

We simulate a 7-node chain topology in ns-2 with the
802.11Ext MAC layer at 6Mbps and a link MTU of 1500
bytes. The physical layer model consists of logical links,
where nodes can communicate perfectly with the two adja-
cent nodes. The interference range is the same as the trans-
mit range: packet reception fails only when two adjacent
nodes transmit at the same time. In these experiments, we
look at the overall PRR of all link layer segments, because
in ns2’s simplification of the wireless channel, where the
increased forwarding load of grant-to-send causes all col-
lisions to occur on the first link, unlike in real networks.

Figure shows UDP’s throughput and end-to-end net-
work delivery ratio as a function of grant duration. While
the values are different than in Figure (a)|and the peaks are
steeper, the simulation shows the same trends. The second
peak is at 2.4 ms rather than 3ms because of the differences
in preamble length and bitrate.

At the minimum grant, 200us, both throughput and deliv-
ery are significantly higher than CSMA. From Figure 3| we
know that a grant longer than a packet time avoids intra-flow
collisions. Why does a short grant help?

Examining the simulation logs, we find that a small grant’s

benefit comes from delaying a transmitter slightly, so the
forwarder is likely to win CSMA. Essentially, a small grant
gives CSMA scheduling priority to the forwarding node. Fig-
ure [5] shows this behavior. This priority avoids the case
where two nodes both enter carrier sense at the same time,
sense an idle channel, and transmit.

Small grants do not avoid hidden terminal collisions. Packet
as still collides in Figure 5] as node A believes it can trans-
mit at the same time as node C. Furthermore, grants longer
than the CSMA backoff window harm throughput. A’s first
transmission of a starts after B’s grant concludes, but col-
lides at B. A retransmits ay, and this second transmission
succeeds. A’s first transmission will always fail as long as
B’s grant is shorter than a packet time, and it delays when
A’s second, successful, transmission occurs.

This explains why throughput declines between the two
peaks. It also explains why overall PRR increases with a
small grant, but does not reach 100% until 2.4 ms. The sig-
nificant increase at 2.2 ms is because the actual packet time
for 6 Mbps is between 2.2 and 2.4 ms. CSMA backoff means
that a grant very slightly below a packet duration can avoid
most, though not all, collisions.

4.3 Analysis

The simulation results allow us to describe grant-to-send
analytically. In this analysis, p is the length of a packet, g
is the grant duration in terms of p, and B is the maximum
single-hop throughput of the link layer. In real networks g
is in absolute time units such as microseconds; here it is in
terms of p for simplicity.

When g = 0 (CSMA, Figure @, A and B contend for the
channel. Prior work by Vyas et al. shows that such a flow
can sustain a throughput of %, where k is in the range of
0.3 to 3, is typically well above 1, and depends on load as
well as physical parameters [36].

When g < p (Figure E]), A and B do not contend, but A’s
first transmission is lost due to hidden terminal C. A’s inter-
packet interval is 3p + g: B’s forwarding, B’s grant, A’s first
transmission, and A’s retransmission. The flow can sustain a
throughput of fg .

When g > p (Ii:igure B), A transmits collision-free. A’s
inter-packet interval is 2p + ¢g: B’s forwarding, B’s grant,
and A’s transmission. The flow throughput is

B
242
Therefore, the throughput 7" of a grant g is

= ifg=0
T(g) = 3f§ ifg<p
25@ ifg=p

B

From this analysis, the highest throughput is when g = p.
This falls under case 3, such that the throughput is %, which
is the maximum achievable throughput in flows longer than
2 hops [39]. As g — 0, case 2 approaches but does not reach
%. In real networks, grants smaller than the CSMA backoff

_'Bound’

0.0, 0 . L
0.1 1 10
Data Load (Mbps)

(a) Throughput. The bound is 1/3 of the
throughput of the bottleneck link.

End-to-End Delivery
o O O B
~ O 00 O

© o
o N
T

0.1 1 10
Data Load (Mbps)

(b) End-to-end delivery.

Figure 6: UDP performance on the small testbed with
varying load (log scale). Each data point is averaged over
21 runs. Error bars show the standard deviation.

interval cause B to sometimes lose CSMA, so as g — 0 the
network starts to behave as a mix of cases 1 and 2.

Figure supports this analysis. In this simulation, p =
2.4ms. The two peaks have a throughput of 1.72 Mbps,
which is approximately one third of the single hop through-
put of 5.5 Mbps. For example, for a 2ms grant (the worst
grant in the plot), 3 + % = 1?? + g = %. Therefore
T(2ms) = %, or 1.4Mbps. The results in Figure
are in a real network with other contenders. They violate as-
sumptions in the analysis so do not match the equation, but

show the same trend.

4.4 Summary

Through a controlled experiment, simulation, and analy-
sis, we find that the optimal grant duration in a UDP flow
is a packet time. The intuition is that nodes that receive one
packet expect to forward one packet. More generally, a grant
should announce how long it expects a recipient to use the
channel in response to the received packet. We defer an eval-
uation of this generalization to Section[§] where we examine
Deluge, a protocol that uses bursts of broadcasts.

S. UDPIN A LARGE TESTBED

1.6 RTS
1.4 CSMA %
1.2 S SR
1.0 : Sy
o 0.8
2 ‘ ‘ ‘ ‘ ‘
o
- 16 &5 x
S 1.4| CSMA :
212 . 3
S 1.0 S
© 0.8
=
16| s
1.4 RTS
1.2 . % § "
1.0 = S sy
0.8

1 2 3 4 s
Number of Hops

Figure 7: Comparison of UDP throughput for node
pairs on a 24-node testbed; the solid line traces the
mean. Shorter routes favor CSMA and longer ones favor
RTS/CTS. Grant-to-send maintains efficiency of CSMA
in shorter routes, and outperforms RTS/CTS in longer
routes, showing up to 49% gain over CSMA and 23%
over RTS/CTS.

The prior section makes four simplifying assumptions:
the transmit and interference range are equal, a node knows
the next hop’s transmission duration, routes are static, and
there are few contenders. Evaluating UDP in a large testbed
allows us to validate these controlled results in an uncon-
trolled environment. It also provides a basis for understand-
ing more complex protocols in later sections.

These experiments use a 24-node testbed in our build-
ing. Unlike the controlled experiments in Section [the
testbed shares the 802.11 spectrum with the building’s heav-
ily used wireless network. The 24 nodes are spread across
6 floors. We omit pictures of the physical network topology
for anonymity, but report aspects of the logical topology.

5.1 CSMA, RTS/CTS, and Grant-to-send

Figure [6] shows the throughput and end-to-end delivery
ratio of CSMA, RTS/CTS, and grant-to-send (GTS) between
a single node pair as the offered load increases. The route
was typically 4 hops. Nodes used a 5.5Mbps fixed bitrate.

As in Figure 2] CSMA'’s throughput and delivery degrade
after it is pushed past approximately 800Kbps, dropping to
608Kbps and a delivery ratio of 34%. RTS/CTS flattens at
800Kbps, maintaining a delivery ratio of 64%. Grant-to-
send is able to sustain a throughput of 956Kbps and a de-
livery ratio of 99.7%. Under load and in the presence of
other interfering transmitters, grant-to-send’s throughput is

Hops #Pairs GTS CSMA RTS/CTS
1 2 260 | 2.60(0%) 2.27 (15%)
2 6 119 LI2(6%) 1.11 (7%)
3 6 0.90 0.70 (28%) 0.79 (13%)
4 8 0.77 0.57 (35%) = 0.69 (15%)
5 1 0.65 0.50 (30%) 0.58 (12%)

Total 23 1.06 092 (15%) 0.96 (10%)

Table 2: UDP throughput (Mbps) for 23 node pairs av-
eraged for each hop count. Percentages show grant-to-
send’s improvement. Grant-to-send has higher or equal
throughput in all cases.

20% higher and it reduces end-to-end losses by over 99%.

The bound line Figure[6(a)|represents the theoretical through-

put bound of the topology. We compute this by starting with
the link-layer throughput measurement in Table [T] of 3.36
Mbps. As the route is longer than 2 hops, the bound is one
third the link throughput [39]. Furthermore, packet losses
reduce throughput: the bottleneck link has a PRR of 90%,
cutting the throughput by one tenth, leading to an overall
throughput of 1.01 Mbps. Grant-to-send achieves 965Kbps,
96% of this upper bound.

5.2 Effect of Hop Count

In this section, we measure the performance of grant-to-
send using the full testbed. We pick one source that has a
reasonable distribution of hop counts to other nodes, and
measured the throughput of all 23 possible pairs. Each mea-
surement is a 1 minute run of iperf. We measure each pair
using CSMA, RTS/CTS, and grant-to-send, repeating this
ten times. Each data point is the average of 10 runs. This
comprises over ten hours of measurements.

Figure [/| shows the results as throughput ratios between
collision avoidance schemes, grouped by hop count. Table[2]
presents the raw results, averaged for each hop count. As
these results are taken on a dynamic routing topology de-
cided by Srcr, the hop count between two nodes can change
over time. We statically sample the hop count between each
pair before the experiment. Therefore, the number of hops
shown is just for reference, and might not reflect the actual
number of hops taken.

The top plot in Figure[7]shows CSMA has higher through-
put than RTS/CTS in and 1- and 2-hop routes. This follows
from the measurements in Table |1} when collisions are rare,
RTS/CTS imposes unnecessary overhead. At 3 hops, the
hidden terminal comes into play and RTS/CTS sustains a
higher throughput than CSMA —up to 38% —on a 5.5 Mbps
link. This contradicts a common belief in the research litera-
ture [[15,17,[25]] that CSMA is superior to RTS/CTS in wire-
less meshes; that the primary experimental study, Srcr [[15],
only examined TCP on routes of up to 3 hops.

The middle plot shows that grant-to-send matches the through-

put of CSMA for one-hop networks and is superior — up to

49% — on longer routes. The bottom plot shows that grant-
to-send outperforms RTS/CTS for all hop counts.

5.3 Variable Bit Rate

So far, all nodes used the same bitrate, 5.5 Mbps mak-
ing the forwarder’s packet duration predictable. In practice,
however, mesh routing layers often use bitrate adaptation to
minimize transmit time.

Our modified Srcr implementation includes a grant adap-
tation scheme. A node maintains a hashtable keyed by the
(next hop, destination) pair. The hashtable stores the last bi-
trate the node heard that entry use. Destination is necessary
because it can change what link and bitrate the next hop uses.
When selecting a grant duration, grant-to-send assumes the
last bitrate heard. If there is no entry, grant-to-send assumes
the fastest bitrate: the analysis in Section shows that un-
derestimating is better than greatly overestimating.

This approach assumes that bitrate selections are stable.
To check the validity of this assumption, we run Srcr with
variable bit rates on top of grant-to-send and log whenever
a grant does not match the subsequent transmission. This
experiment is unfavorable for bitrate stability because nodes
go through their startup settling period of finding the best
rate. Across the 23 node pairs, 1.2% grants did not match.
Of these, 66% were underestimates. Grant-to-send overesti-
mates grants on 0.4% of transmissions. We defer a discus-
sion of throughput with bitrate selection to Section

5.4 Summary

This section examined how grant-to-send affects a UDP
flow in an uncontrolled wireless environment. Grant-to-send’s
throughput is up to 49% higher than CSMA, and up to 23%
higher than RTS/CTS.

A single UDP flow, however, is a very simple workload.
The next sections examine three wireless protocols of in-
creasing complexity: sensor network collection trees, which
consist of multiple unreliable flows converging on a single
node, TCP, which has two opposing packet flows, and sensor
network data dissemination, which uses bursts of broadcasts
to reliably deliver new binaries across a network.

6. COLLECTION TREES

In this section, we evaluate whether grant-to-send can re-
place a protocol-specific collision avoidance mechanism with-
out loss in performance. In sensor networks, collection pro-
tocols construct minimum-cost trees to data sinks. These
trees are unidirectional: they do not maintain reverse sink-
to-source routes. Like UDP, collection protocols are connec-
tionless and unreliable. Since multiple nodes can report data
at once, collection protocols can be viewed as multiple UDP
flows converging at a gateway.

Under this abstraction, however, collection protocols use
very different mechanisms than 802.11 meshes in order to
cope with environmental dynamics and energy constraints.
For example, they use distance vector, rather than link-state

50

5 36.0 36.7 f 0.5 0.474
@ 40 1 g T 0.368
o =
= I T 0.4
530 a l
by 203
[*)]
5 20 1%5 202 0.169
c kel
~ 10 T So.1

0 0.0

CSMA GTS RTS CSMA GTS RTS

(a) Throughput. (b) End-to-end delivery ratio.
Figure 8: Event-driven collection using CTP on CSMA,
GTS, and RTS/CTS. GTS delivers throughput compara-
ble to CSMA’s, while increasing end-to-end delivery.

algorithms. More generally, the importance of energy effi-
ciency causes most layer 3 sensornet protocols to have cus-
tom built-in collision avoidance mechanisms.

6.1 CTP

CTP is the standard collection protocol in TinyOS 2.1 [6].
It uses a transmit timer to avoid self-interference along a
route. When a CTP node transmits a data packet, it waits
approximately 2 packet times before sending another packet
or retransmitting. This timer is local to a node. It does not
prevent other nodes from immediately sending to the same
next hop and colliding.

Grant-to-send can provide a superior mechanism to CTP’s
timer: it can avoid collisions with all nearby nodes, not just a
single transmitter. We modify CTP by removing its transmit
timer and instead having it send all data packets with a grant
of one packet time (10ms). As with UDP, data packets to a
data sink (the last hop) carry a grant of zero.

6.2 Evaluation

When network traffic is light and there are few collisions,
grant-to-send imposes no cost and provides no benefit. On
the opposite extreme, if all nodes send data as quickly as pos-
sible, the lack of congestion control in CTP causes queues
to overflow and the network devolves to single-hop neigh-
bors contending at a sink with grants of zero. Therefore, we
evaluate grant-to-send in an event-driven collection scenario,
where a subset of nodes detect an event and stream a large
data report. Volcanic seismic monitoring is one example of
an application that has such a workload [38]]. The assump-
tion in this scenario is that the low-power sensor network
wakes up for a burst of activity: collision avoidance is not a
major concern when the network is asleep.

We run CTP on 64 nodes in the Mirage testbed [19]. A
radio packet simulates a triggering event, and 14 nodes that
hear the packet begin streaming data to a sink. The source
nodes are fixed throughout the experiments to minimize vari-
ations between runs. Source nodes stream packets for 15
minutes. Each result is the average of five runs.

Figure[8(a)|shows throughput under CSMA, RTS/CTS and
grant-to-send. Grant-to-send’s throughput is 220% higher

Hops #Pairs GTS CSMA RTS/CTS
1 2 225 | 2212%) 1.91(18%)
2 6 077 = 0720%) 061 (26%)
3 6 0.51 044 (16%) 0.24 (113%)
4 8 046 = 031 (48%) 0.18 (156%)
5 1 0.50 039 (28%) 0.28 (19%)
Total 23 071 0.62(15%) 0.46 (53%)

Table 3: TCP throughput (Mbps) for 23 node pairs aver-
aged for each hop count on the large testbed. Percentages
show grant-to-send’s improvement.

than RTS/CTS and within experimental error of CSMA. Grants
can replace an existing layer 3 collision avoidance mecha-
nism with no appreciable effect on throughput.

Figure[8(b)|shows CTP’s end-to-end delivery ratio. Grant-
to-send’s delivery ratio is 180% higher than CSMA’s, and
29% higher than RTS/CTS. This improvement comes from
the natural rate-limiting that grant-to-send provides. For ex-
ample, while each CSMA node sends at most once every
three packet times, the aggregation of this load towards the
root causes queue drops. While grant-to-send does not com-
pletely solve this problem, it limits load in terms of broadcast
regions, rather than individual nodes. Therefore, a group of
nodes close to one another impose an aggregate load of at
most one transmission every three packet times.

An astute reader will notice that the results in Figure [§]
demonstrate a major difference between 802.11 and TinyOS’s
MAC layer. The throughput benefit of grant-to-send is much
smaller in collection than in UDP. This can be explained
by two observations. First, the CSMA and RTS/CTS re-
sults already include CTP’s transmit timer, providing better
collision avoidance than 802.11’s UDP. Second, the default
CSMA backoff interval in the TinyOS MAC layer dominates
a packet time. An actual frame transmission takes approx-
imately 1 ms, while backoff is 1-9 ms. Correspondingly,
while routes do self-interfere, the interference is much less
pronounced than with 802.11.

6.3 Summary

Grant-to-send outperforms both CSMA and RTS/CTS for
event-driven workloads in sensor network collection trees. It
provides the best of both worlds: the throughput of CSMA
and the delivery ratio of RT'S/CTS. It replaces a layer 3 mech-
anism with a more general layer 2 one. Section [8|examines
whether the same replacement approach can be applied to
a broadcast-based protocol. First, however, the next section
examines a slightly more complex flow case: TCP.

7. TCP

Examining TCP, we find that, in contrast to UDP and col-
lection trees, grant-to-send alone offers a small throughput
improvement. We identify that collisions between TCP’s
two flow directions are a significant cause of packet loss. Re-

1.0 1.0 - 1.0
™ 0.995 a @
s 0.638 0573 = 0.98 = 0.698 0.650 8 . 0.868
5 0.6f 0.498 > 0.96 0.944 5 0.6 é
g o 2 508
$0.4 2094 o022 504 e

[

2 02 0 092 2 0.2 ©0.7| oeso 0684
[0.90 = <>(

0.0 CSMA GTS RTS GTS/AF CSMA GTS RTS GTS/AF 0.0 CSMA GTS RTS 0.6 CSMA GTS RTS

(a) Throughput. (b) Data end-to-end delivery.
Figure 9: Small testbed TCP performance. Error bars
show standard deviation. Grant-to-send significantly im-
proves end-to-end delivery but throughput increase are
modest. GTS/AF is GTS with 50% ack filtering.

ducing such collisions brings TCP’s throughput with grant-
to-send up to within 86% of UDP’s.

Table [3] shows aggregate results for TCP between the 23
pairs described in Section Grant-to-send matches or ex-
ceeds the throughput of CSMA and RTS/CTS. CSMA out-
performs RTS/CTS for all hop counts, and grant-to-send out-
performs CSMA. 3-hop throughput, however, is well below
one third of the single-hop throughput. While grant-to-send
is improving throughout by avoiding some collisions, others
must remain.

7.1 Small Testbed

Figure [0 shows TCP’s performance under the same small
testbed setup as the single-flow UDP experiments in Sec-
tion 4.1} External interference is very limited. Grants are
3ms and the last hop uses a grant of zero. The TCP stack
is the OpenWRT default, Reno. TCP throughput with grant-
to-send is 28% higher than CSMA, and 11% higher than RT-
S/CTS. Examining the delivery ratio of data packets, grant-
to-send reduces their drop rate by ~85%.

If TCP’s throughput is constrained by its congestion win-
dow, an 85% reduction in packet losses would lead to a much
larger increase in throughput than 28%. 638 Kbps is ap-
proximately 60% of the topology’s maximum throughput.
These results imply that end-to-end losses are not the princi-
pal cause of TCP’s poor performance. As we did with UDP,
we turn to simulation to understand TCP’s performance.

7.2 Simulation

We run TCP New Reno in the same ns-2 simulation as
Section[5} Figure shows similar results to the testbed
experiment: grant-to-send’s throughput is slightly higher than
CSMA’s. As in the testbed, grant-to-send in ns2 also has
a very high end-to-end delivery ratio (not shown). Grant-
to-send reduces end-to-end losses without observing a com-
mensurate higher throughput.

Figure [I0(b)] shows the limiting factor: the link-layer de-
livery ratio. Unlike UDP, which observed a >100% im-

provement in link-layer delivery with grant-to-send (FigureA(a)]

20 to 41%), TCP does not see a significant improvement.

(a) Throughput (b) Avg. Link Delivery Ratio
Figure 10: Simulation results on TCP performance.
Grant-to-send does not improve throughput. Grant-to-
send’s lack of link delivery ratio improvement reveals the
presence of data-ack collisions.

= 0.75[
Y
s 1
— 0.70 + 2
a 3
5 £
4
5 0.65 +
£
0.60[‘ ‘
0.48 0.52 0.56

Average Link Delivery

Figure 11: Throughput and average link delivery for dif-
ferent ack filtering rates (fractions shown). Reducing ac-
knowledgments improves TCP performance.

This indicates a possible cause of the poor performance. Link
losses lead to retransmissions, which cause packets to oc-
cupy the channel longer. The fact that a reduction in end-to-
end losses does not improve throughput means the medium
is already being completely utilized. The bottleneck is not
the congestion window, but the actual link throughput.

If poor link performance is the cause, improving the link
delivery ratio will increase TCP’s throughput. Since links
in the simulation only drop packets due to collisions and a
one packet time grant greatly avoids intra-flow collisions,
collisions must be between flows. There are only two flows
in this experiment — data and acknowledgments. Collisions
between data and acks could be causing TCP to retransmit
more at the link layer, reducing the achievable throughput.

7.3 Sending Fewer Acks

RFC 2581 recommends TCP sends at least one ack packet
for every two data packets in order to prevent packet bursts.
Other transport protocols, such as DCCP [26], have shown
that applying congestion control on acknowledgments does
not preclude good performance.

To test our hypothesis that TCP’s poor performance is in
part due to data/ack collisions, we modified our experimen-
tal setup to send fewer acknowledgments. To reduce the ack
rate without changing the TCP stack, we changed Srcr so

DATA FLOW

DATA
Suppressed

E Suppressed

ACK FLOW

Figure 12: Although grant-to-send successfully avoids
intra-flow collisions, it is vulnerable to inter-flow colli-
sions, shown at node D.

that mesh endpoints and gateways filter acknowledgments.
Reducing the acknowledgment rate only matters when they
are causing collisions, that is, when TCP has a large trans-
mit window. When there is a small window, there are few
packets in flight, and lost acknowledgments can more easily
lead to timeouts. We set a window threshold, above which
Srcr would drop every n*” acknowledgment. This filtering
clearly would not work in full systems: among other limita-
tions, it assumes that data flows in only one direction. While
not a reasonable solution to improve TCP’s performance, it
tests our hypothesis that data/ack collisions are at fault.

Figure [IT] shows TCP’s performance using grant-to-send
as the acknowledgment filtering rate increases. A combina-
tion of grant-to-send and 50% ack filtering leads to a through-
put of 722Kbps, a 45% increase over CSMA’s 498 Kbps, and
86% of the UDP throughput reported in Section [4.1] while
providing TCP’s reliability and in-order delivery. The link
layer delivery is boosted from 49% to 55%: this represents
a 25% improvement in the bottleneck link. Figure [IT] val-
idates that grant-to-send’s bottleneck was throughput due
to the link delivery ratio. Ack filtering decreases through-
put with CSMA and RTS/CTS since the clear channel time
simply causes them to transmit data packets faster and have
more data-data collisions.

Figure[I2]illustrates why grant-to-send does not help with
data-ack collisions. When C forwards data, both A and B
are suppressed by B’s prior grant to C. This avoids data-data
collisions. Similarly for acknowledgments, F’s prior grant
to E avoids ack-ack collisions from F and G. However, C
and E cannot resolve collisions using grants. This leads to
a data-ack collision. Furthermore, this is not an edge case:
data and ack packets collide on every hop of the route. TCP’s
traffic pattern is the worst case scenario for the hidden termi-
nal problem — two flows with highly correlated traffic (data
triggers acks) in opposite directions. Quantifying the benefit
of ack filtering in the larger testbed is a point of future work.

7.4 Discrepancy

To followers of mesh TCP performance, the results in this
section might seem surprising: TCP can, over a 4-hop path,
sustain high throughput. This result disagrees with prior
studies of Srcr performance [[15} [25]]. We believe that the
cause for Srcr’s poor throughput in these studies is its dy-
namic bitrate selection algorithm. Many links devolve to

11

@
i

T I
o | | L
“® ™

AT

DA
Time

I
i

P E— e I I —

(a) Standard Deluge.
~®
T u‘ﬁﬁu

ADV.¥ Suppressed

I,

Time

(b) V-Deluge and GTS-Deluge.

Figure 13: A simple example of Deluge with and without
collision avoidance, running on a chain topology.

1Mbps, choking the maximum throughput.

The results in this section use a fixed 5.5Mbps bitrate.Nodes
running Srcr on the larger testbed exhibited excellent re-
sults, on par with those in Figure P(a)] With bit rate se-
lection, however, Srcr’s performance was drastically poorer.
For example, UDP running with dynamic bitrate selection
reduced throughput by 80% compared to the results in Fig-
ure [/| TCP was similarly poor. More recent results, show-
ing good OLSR performance on top of a static bitrate, add
further evidence that bitrate selection algorithm causes poor
performance [30]. Clearly, future experimentation is needed.

7.5 Summary

Packet loss is a well known problem for TCP’s in wire-
less networks. To the best of our knowledge, however, there
are no experimental studies of why packets are lost or what a
network could do to avoid them. Applying grant-to-send to
TCP provided insight into this typically poor performance:
data/ack collisions. Applying grant-to-send to reduce intra-
flow collisions and aggregating acks to reduce inter-flow col-
lisions can improve TCP’s throughput over CSMA by up to
45%, within 86% of UDP’s. The technique we use to show
the cost of data/ack collisions is ill-advised for use in real
networks, but its effectiveness suggests that more intelligent
approaches are worth investigating.

8. DISSEMINATION

In sensor networks, a dissemination protocol reliably a
piece of data to every node. This section examines Del-
uge [22], a dissemination protocol for data items much larger

than node RAM. Deluge’s typical use is distributing new
node binaries into a network for in-situ reprogramming.
Deluge uses a three-way handshake to deliver a burst of
data broadcasts. It is an evolution of wireless dissemina-
tion protocols such as SPIN [12]]. Like CTP, Deluge uses
protocol-specific suppression mechanisms at layer 3 to avoid
data collisions and deliver data faster. This section examines
whether grants are general enough to implement these mech-
anisms and achieve equivalent or superior performance.

8.1 Deluge and V-Deluge

Deluge periodically broadcasts what binary version a node
has. When a node hears a newer version, it sends a unicast
request for the data to the advertising node. A node receiving
a request broadcasts a flurry of packets in response. When a
node has part of the new image, it advertises quickly, such
that neighbors with the older version request it.

Prior studies of the original Deluge protocol showed that
sending bursts of data packets can cause long periods of
high collision, as shown in Figure [I3(a)] A Deluge variant
called Visual Deluge (V-Deluge) solves this problem by hav-
ing requests suppress other traffic, as shown in Figure [T3(b)}
These suppressions reduce dissemination time by 31% while
simultaneously sending 46% fewer packets [37].

This suppression is a grant: when a node sends a request,
it grants for how long it expects the flurry of data packets to
take. Request packets already state how many data packets
they need, so computing a grant duration is trivial. Data
packets and advertisements have grants of zero.

This suppression through requests is not perfect. In Fig-
ure for example, D cannot respond immediately to
E’s request, so E’s grant will not cover all of D’s data trans-
missions. However, if D is delayed long enough E will re-
request and grant again.

8.2 GTS-Deluge

We modify Deluge in TinyOS 2.0.2 to grant as described
above: the change involved adding a single parameter to the
3 calls that send a packet (advertisement, request, and data).
We call this version of Deluge GTS-Deluge.

We obtained the V-Deluge source code from its authors.

We compare V-Deluge and GTS-Deluge with the same method-

ology and testbed (Mirage) used to compare standard Deluge
and V-Deluge [37]]. Each experimental run involves inject-
ing a new binary at one corner of the network. We measure
two metrics, dissemination time and packet transmissions,
as the average of ten runs. V-Deluge and GTS-Deluge per-
form equivalently; their latency and transmission counts are
within 3%, a variation well within experimental error.
V-Deluge’s mechanism can be easily expressed as a grant
in GTS-Deluge, and the two have indistinguishable perfor-
mance. GTS-Deluge requires 3 function call changes to Del-
uge. In contrast, V-Deluge modifies 247 lines of code, five
times the entire implementation of grant-to-send! These re-
sults, together with the results from Section [6] provide evi-

12

JOZ0ZCNOR0R0

(a) A and C are hidden and (b) A and C are not hidden and
grant other nodes. grant each other.

Figure 14: A and C take turns transmitting overlapping
grants such that tqp > ¢ casing starvation at B.

m m
i
@ o

Time

(b) Grant-to-send

™ m
i
e o

Time

(a) CSMA

Mmol4 ejeq
m O O W >

—_—

moj4 ejeq
m oo w >

—_—

Figure 15: An edge case where grant-to-send exacerbates
the exposed terminal problem and shows 33% through-
put drop over ideal CSMA scheduling. C and D send
packets in opposite directions.

dence that grant-to-send is more broadly applicable than uni-
cast flows, and is general enough to describe existing higher-
layer collision avoidance mechanisms.

9. BEST EFFORT

The previous sections evaluated grant-to-send’s benefit and
found it outperforms CSMA and RTS/CTS in a wide variety
of protocols and scenarios, yet remains general enough to
describe existing layer 3 collision avoidance schemes found
in sensor network protocols. The philosophy behind grant-
to-send is to have a simple and lightweight but generally ap-
plicable collision avoidance mechanism. However, as grant-
to-send takes a best effort approach, it has limitations and
edge cases, which this section examines.

9.1 Starvation

Since grant-to-send suppresses transmissions, a natural con-
cern is whether a node can starve. For example, node B can
starve in Figure [T4(a) and Figure [I4(b)] In both cases how-
ever, a single packet loss will break the starvation, as B will
be able to fairly enter CSMA at the end of the last grant it
heard. Needless to say, most wireless networks exhibit sig-
nificant packet losses. In Figure such an event could
be due to the hidden terminal problem; in Figure[T4(b)]a loss
could occur due to external interference, a random packet
drop, or any of the other vagaries of wireless. These topolo-
gies also assume that no other nodes contend for the channel:
if either A or C has to compete with neighbors, grants can
suppress them long enough for B to transmit.

9.2 Exposed Terminals

The exposed terminal problem is the inverse of the hid-
den terminal. It represents a situation in which two nodes
think they cannot transmit concurrently because they hear
each other, but their transmissions would not collide at the
intended receivers. In CSMA, the exposed terminal problem
is generally irrelevant. Wireless link layers use synchronous
acknowledgments so two adjacent nodes transmitting con-
currently will interfere with each other’s ack reception.

Grant-to-send suffers more from the exposed terminal prob-
lem than CSMA, as Figure[I5|shows. In this linear topology,
C send multihop packets to A through B and D sends single-
hop packets to E. Figure shows the optimal schedule
for CSMA, where B uses two thirds of the link throughput.
Figure[I5(b)|shows how grant-to-send only gives D one third
of the link throughput, as C’s grant suppresses D. Allowing
B and D to transmit concurrently would require knowledge
of B’s destination: if it is C, D cannot transmit.

While the exposed terminal is an issue in this and simi-
larly constructed examples, its importance and prevalence in
mesh workloads is unclear. Nearby nodes in access meshes
use the same gateways, making this diverging traffic pattern
uncommon. In the presence of other flows, neither C nor D
would be able to use the link throughput as shown in Fig-
ure [[5(a)l Additionally, the throughput gains grant-to-send
observes is comparable to the 33% reduction seen in Fig-
ure[I5(b)] such that its benefit balance out its costs.

9.3 Imperfect Grants and Retransmissions

Grant durations are the expected duration of the recipi-
ent’s transmission(s). A recipient cannot guarantee that its
transmissions will complete before the grant expires. There
are many cases where a transmission takes longer than the
grant: CSMA backoff due to external interference, link-layer
retransmissions, and outstanding grants to other nodes (such
as in Figure[I3(b)) can all delay transmission.

Like CSMA and RTS/CTS, grant-to-send avoids collisions:
it does not prevent them. The analysis in Section4.3]and ex-
perimental results in Section [4.1] showed that shorter-than-
optimal grants are superior to CSMA. Therefore, while an
adaptive scheme to estimate transmission duration could im-
prove performance, small grants are still better than no grants
at all. An adaptive scheme that considers expected transmis-
sions (ETX) is a possible future direction.

9.4 Fairness

Because grants can be multiple packet times, they can
harm fairness. One node can receive large grants and use
more than its fair share of the channel. Furthermore, grant-
to-send as described in this paper simply transmits packets
in FIFO order. Large grants can give a larger channel share.

Incorporating fair queuing into grant-to-send is our princi-
pal of future work. On one hand, grants provide an excellent
measurement of channel occupancy for fair queuing calcu-
lations. On the other, these grants are distributed in nature,
such that each node can have a different perception of chan-

13

nel use. Our initial investigations into this topic have dis-
covered many aberrant edge cases where disagreeing nodes
starve flows, and we are actively exploring algorithms to
smooth these inconsistencies and restore fairness.

10. RELATED WORK

RTS/CTS as described in Section [2]is only the most basic
instance; there is a long history of research and a plethora of
variants. A full survey is beyond the scope of this paper so
we merely mention a few prominent approaches. One well-
understood limitation of RTS/CTS is that it is less effective
when interference range is larger than the communication
range [40]. BTMA [35]] and DBTMA [21]] solve this issue
by introducing a sideband channel. In multihop wireless net-
works, collision avoidance is equivalent to the problem of
physical layer spatial reuse. POWMAC [32] improves spa-
tial reuse by exchanging signal information with RTS/CTS.
MACA-P [8] accumulates multiple RTS/CTS exchanges to
reduce unnecessary RTS/CTS suppression.

Grant-to-send has similarities to 802.11 fast-forward schedul-

ing [11]], which embeds an RTS in an acknowledgment packet
to enable the receiver to forward immediately. Since fast-
forward is built on top of RTS/CTS, it inherits the overhead
for short routes. Furthermore, as fast-forward RTS pack-
ets do not go through CSMA, it sacrifices fairness between
contending transmitters. As fast-forward requires different
packet formats, it requires new hardware and is not compat-
ible with existing networks.

Network coding between the link and network layers has
emerged as a way to increase throughput by having a sin-
gle frame contain coded packets for multiple destinations.
Grant-to-send is complementary to this work. Protocols such
as MORE [17], MIXIT [24], and COPE [25] require receiv-
ing complete packets or at least uncorrupted packet frag-
ments: reducing collisions boosts their performance. COPE,
for example, explicitly notes that hidden terminal collisions
prevent it from achieving any coding gain in TCP, and so
evaluates TCP in a single-hop, collision-free network with a
logical routing topology.

Approaches such as ZigZag [20] and analog coding [23]]
can recover collided packets. ZigZag, for example, is de-
signed for one hop AP-client networks, so APs can mitigate
the hidden terminal problem between clients. Grant-to-send,
in contrast, addresses the problem of collisions in a multi-
hop mesh. A combination of these schemes, where grant-
to-send runs on commodity mesh nodes and ZigZag runs at
gateways with special hardware, could achieve both benefits.

11. CONCLUSION

Grant-to-send provides a simple and inexpensive way to
avoid collisions in multi-hop wireless networks. It is easy to
implement and can is effective in many protocols and traffic
patterns. It does not have the overhead associated with colli-
sion avoidance schemes such as RTS/CTS, yet gives signif-
icant throughput gains. For UDP, it achieves >99% end-to-

end reliability and can provide up to 96% of the theoretical
maximum throughput. While TCP suffers from collisions
beyond those grant-to-send can avoid, initial results suggest
that improved acknowledgment policies improve TCP’s through-
put to 86% of UDP’s.

Grant-to-send has a very low barrier to adoption. As grant-
to-send uses the 802.11 duration field, standard 802.11 nodes
respect grants and grant-to-send respects RT'S/CTS. Many of
our experiments occurred in the midst of a busy 802.11 net-
work during working hours. Furthermore, as grant-to-send
reverts to simple CSMA at the last hop, so act identically to
standard CSMA devices when talking to an AP.

Grant-to-send is able to achieve these results by completely
rethinking the information flow in collision avoidance. Rather
than avoid loss of its own packets due to collisions, a grant-
to-send node helps others avoid collisions. Networks have
traditionally been modeled as individuals that compete, at
time selfishly, within certain rules. Grant-to-send’s efficacy
suggests that, at least in wireless meshes, perhaps these rules
should enforce more collaborative relationships.

12. REFERENCES

[1]

[2]
[3]

[4

[5]
[6]

[7

[8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

ath9k : driver for atheros ieee 802.11n wlan based chipsets.
http://linuxwireless.org/en/users/Drivers/ath9kl
Broadcom wireless LAN adapter user guide.

Madwifi : the linux drivers for wlan cards based on atheros chipsets.
http://madwifi.orgl

Reference manual for the NETGEAR ProSafe 802.11g Wireless AP WG102.
http://kbserver.netgear.com/pdf/wgl02_ref manual 4 _0_
6.pdf}

Roofnet mesh routing software using Srcr.
http://read.cs.ucla.edu/click/packages/roofnet|

TEP 123: Collection Tree Protocol.

http://www.tinyos.net/tinyos-2.x/doc/.

A. Acharya, S. Ganu, and A. Misra. DCMA: A label switching MAC for
efficient packet forwarding in multihop wireless networks. IEEE Journal on
Selected Areas in Communications, 24(11):1995-2004, Nov. 2006.

A. Acharya, A. Misra, and S. Bansal. MACA-P: a MAC for concurrent
transmissions in multi-hop wireless networks. Proceedings of the First IEEE
International Conference on Pervasive Computing and Communications,
(PerCom), pages 505-508, March 2003.

D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level
measurements from an 802.11b mesh network. In SIGCOMM ’04: Proceedings
of the 2004 conference on Applications, technologies, architectures, and
protocols for computer communications, 2004.

B. Bensaou, Y. Wang, and C. C. Ko. Fair medium access in 802.11 based
wireless ad-hoc networks. MobiHOC: First Annual Workshop on Mobile and
Ad Hoc Networking and Computing, pages 99-106, 2000.

D. Berger, Z. Ye, P. Sinha, S. Krishnamurthy, M. Faloutsos, and S. Tripathi.
TCP-friendly medium access control for ad-hoc wireless networks: alleviating
self-contention. /EEE International Conference on Mobile Ad-hoc and Sensor
Systems, pages 214-223, Oct. 2004.

B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker, M. Fiuczynski,

C. Chambers, and S. Eggers. Extensibility, safety and performance in the SPIN
operating system. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP-15), 1995.

G. Bianchi, L. Fratta, and M. Oliveri. Performance evaluation and enhancement
of the CSMA/CA MAC protocol for 802.11 wireless LANs. PIMRC’96:
Seventh IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications, 2:392-396 vol.2, Oct 1996.

G. Bianchi and I. Tinnirello. Kalman filter estimation of the number of
competing terminals in an ieee 802.11 network. INFOCOM 2003.
Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications Societies. IEEE, 2:844-852 vol.2, March-3 April 2003.

J. Bicket, D. Aguayo, S. Biswas, and R. Morris. Architecture and evaluation of
an unplanned 802.11b mesh network. In MobiCom ’05: Proceedings of the 11th
annual international conference on Mobile computing and networking, 2005.
F. Cali, M. Conti, and E. Gregori. IEEE 802.11 protocol: design and
performance evaluation of an adaptive backoff mechanism. IEEE Journal on
Selected Areas in Communications, 18(9):1774-1786, Sep 2000.

S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading structure for
randomness in wireless opportunistic routing. In SSIGCOMM ’07: Proceedings

14

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

[38]

of the 2007 conference on Applications, technologies, architectures, and
protocols for computer communications, 2007.

Y.-C. Cheng, J. Bellardo, P. Benko, A. C. Snoeren, G. M. Voelker, and

S. Savage. Jigsaw: solving the puzzle of enterprise 802.11 analysis. SIGCOMM
Comput. Commun. Rev., 36(4):39-50, 2006.

B. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. Parkes, J. Shneidman,

A. Snoeren, and A. Vahdat. Mirage: A microeconomic resource allocation
system for sensornet testbeds. In Proceedings of the 2nd IEEE Workshop on
Embedded Networked Sensors (EmNets), 2005.

S. Gollakota and D. Katabi. ZigZag decoding: combating hidden terminals in
wireless networks. In SIGCOMM ’08: Proceedings of the ACM SIGCOMM
2008 conference on Data communication, pages 159170, New York, NY,
USA, 2008. ACM.

Z. Haas and J. Deng. Dual busy tone multiple access (DBTMA)-a multiple
access control scheme for ad hoc networks. IEEE Transactions on
Communications, 50(6):975-985, Jun 2002.

J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol
for network programming at scale. In Proceedings of the Second ACM
Conference on Embedded networked sensor systems (SenSys), 2004.

S. Katti, S. Gollakota, and D. Katabi. Embracing wireless interference: analog
network coding. In SIGCOMM °07: Proceedings of the 2007 conference on
Applications, technologies, architectures, and protocols for computer
communications, pages 397-408, New York, NY, USA, 2007. ACM.

S. Katti and D. Katabi. Mixit: The network meets the wireless channel. In
Hotnets-VI: Proceedings of ACM Hot Topics in Networks Workshop, 2007.

S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft. Xors in the
air: practical wireless network coding. In SIGCOMM ’06: Proceedings of the
2006 conference on Applications, technologies, architectures, and protocols for
computer communications, pages 243-254, New York, NY, USA, 2006. ACM
Press.

E. Kohler, M. Handley, and S. Floyd. Designing DCCP: congestion control
without reliability. In SIGCOMM *06: Proceedings of the 2006 conference on
Applications, technologies, architectures, and protocols for computer
communications, pages 27-38, New York, NY, USA, 2006. ACM.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
modular router. ACM Transactions on Computer Systems, 18(3):263-297,
August 2000.

P. Levis, D. Gay, V. Handziski, J.-H. Hauer, B. Greenstein, M. Turon, J. Hui,
K. Klues, R. S. Cory Sharp, J. Polastre, P. Buonadonna, L. Nachman, G. Tolle,
D. Culler, and A. Wolisz. T2: A Second Generation OS For Embedded Sensor
Networks. Technical Report TKN-05-007, Telecommunication Networks
Group, Technische Universitat Berlin, 2005.

J. Li, C. Blake, D. S. D. Couto, H. I. Lee, and R. Morris. Capacity of ad hoc
wireless networks. In MobiCom ’01: Proceedings of the 7th annual
international conference on Mobile computing and networking, pages 61-69,
New York, NY, USA, 2001. ACM.

M. Li, D. Agrawal, D. Ganesan, A. Venkataramani, and H. Agrawal.
Block-switched networks: A new paradigm for wireless transport. Accepted
submission to the Sixth USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’09). Obtained from authors.

K. Medepalli and F. Tobagi. On optimization of CSMA/CA based wireless
LANS: Part I: Impact of exponential backoff. ICC 06: IEEE International
Conference on Communications, 5:2089-2094, June 2006.

A. Muqattash and M. Krunz. POWMAC: a single-channel power-control
protocol for throughput enhancement in wireless ad hoc networks. I[EEE
Journal on Selected Areas in Communications, 23(5):1067-1084, May 2005.
J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. In IPSN ’05: Proceedings of the 4th international symposium
on Information processing in sensor networks, page 48, Piscataway, NJ, USA,
2005. IEEE Press.

S. Ray, J. B. Carruthers, and D. Starobinski. Evaluation of the masked node
problem in ad hoc wireless lans. I[EEE Transactions on Mobile Computing,
4(5):430-442, 2005.

F. Tobagi and L. Kleinrock. Packet switching in radio channels: Part II-the
hidden terminal problem in carrier sense multiple-access and the busy-tone
solution. IEEE Transactions on Communications, 23(12):1417-1433, Dec
1975.

A. Vyas and F. Tobagi. Impact of interference on the throughput of a multihop
path in a wireless network. In Proceedings of the 3rd International Conference
on Broadband Communications, Networks, and Systems (BROADNETS), 2006.
M. Wachs, J. I. Choi, J. W. Lee, K. Srinivasan, Z. Chen, M. Jain, and P. Levis.
Visibility: A new metric for protocol design. In Proceedings of the Fifth ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2007.

G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fidelity and
yield in a volcano monitoring sensor network. In Proceedings of the 7th
symposium on Operating systems design and implementation (OSDI), 2006.
A. Woo and D. Culler. A transmission control scheme for media access in
sensor networks. In Proceedings of International Conference on Mobile
Computing and Networking (MobiCom), Rome, Italy, July 2001.

K. Xu, M. Gerla, and S. Bae. How effective is the IEEE 802.11 RTS/CTS
handshake in ad hoc networks. Global Telecommunications Conference, 2002.
GLOBECOM °02. IEEE, 1:72-76 vol.1, 17-21 Nov. 2002.

http://linuxwireless.org/en/users/Drivers/ath9k
http://madwifi.org
http://kbserver.netgear.com/pdf/wg102_ref_manual_4_0_6.pdf
http://kbserver.netgear.com/pdf/wg102_ref_manual_4_0_6.pdf
http://read.cs.ucla.edu/click/packages/roofnet

	Introduction
	Wireless Collisions
	CSMA/CA and Hidden Terminals
	RTS/CTS
	Summary

	Grant-to-Send
	Intuitive Description
	Formal Description
	Avoiding Collisions
	Grant-to-send in 802.11
	Grant-to-send in 802.15.4
	Summary

	Grant Duration
	Small Testbed
	Simulation
	Analysis
	Summary

	UDP in a Large Testbed
	CSMA, RTS/CTS, and Grant-to-send
	Effect of Hop Count
	Variable Bit Rate
	Summary

	Collection Trees
	CTP
	Evaluation
	Summary

	TCP
	Small Testbed
	Simulation
	Sending Fewer Acks
	Discrepancy
	Summary

	Dissemination
	Deluge and V-Deluge
	GTS-Deluge

	Best Effort
	Starvation
	Exposed Terminals
	Imperfect Grants and Retransmissions
	Fairness

	Related Work
	Conclusion
	References

