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Abstract
We study the effects of wireless channel burstiness on TCP.
We measure TCP throughput over single-hop link traces from
MIT’s 802.11b Roofnet and Intel Berkeley’s 802.15.4 Mi-
rage testbeds. We observe that links with the same packet
reception ratio (PRR) have throughput variations of up to
320%. We find that differences in throughput are accom-
panied by differences in link burstiness. Using the Gilbert-
Elliott model, we compute the parameter µ as a measure of
burstiness. We show that for sufficiently large data traces, a
simple second-order fit over both PRR and µ lowers the es-
timation error of TCP throughput by 50%. The estimation
error reduces by 60%-99% for a more general fit over PRR
and µ. We find that while µ has good deductive quality, the
corresponding Gilbert-Elliott model is not accurate for simu-
lation: TCP throughput values from empirical links and their
corresponding simulated links based on the Gilbert-Elliott
model can differ by up to 80%. These results help develop
a better understanding of the underlying causes for the wide
variations seen wireless network performance.

1. Introduction

This paper is a measurement study of the dynamics and
behavior of wireless links. It strives to broaden the insight
into real-world systems as well as take a step toward bridging
the gap between empirical observations and simulation.

Wireless protocol design is notoriously difficult. This is
especially true with open-spectrum technologies, such as
802.11b, 802.11g, 802.11n, Bluetooth and 802.15.4, all of
which share a 2.4GHz band with cordless phones, microwaves,
and other consumer devices. Being in an open band makes
these technologies inexpensive and therefore ubiquitious. How-
ever, in practice, this means that their RF environments tend
to be complex, interference-heavy, and hard to tackle with
clean analytical approaches or simulations.

Researchers have addressed this challenge by deploying,
testing, and evaluating protocols on indoor and outdoor mesh
testbeds [27, 4, 8, 9, 10, 17, 19, 20, 29]. Deployments
demonstrate that a protocol can work in practice, but their

results are difficult to generalize. Two separate testbeds can
produce completely different results. To explain this varia-
tion, deployment studies typically report high-level network
properties, such as a connectivity graph, reception ratios, av-
erage hop count, and average degree.

These properties seek to succinctly describe the dynam-
ics of a very complex system. While useful for highly gen-
eral observations – e.g., lossier networks will have lower
throughput – they are not sufficient for explaining fine-grained
performance results. Deployments can demonstrate whether
a protocol works, but generalizing to predicting performance
on another wireless mesh remains out of reach.

If these metrics are insufficient for explaining network
performance, then what else should we measure? A com-
plete answer to this question would enable a rigorous analyt-
ical understanding of wireless protocols that matches experi-
mental results. This paper is a first step towards developing a
systematic methodology for characterizing wireless deploy-
ments. It provides an insight on a new measurement, channel
burstiness, and its effect on TCP throughput.

This paper examines the most simple and basic commu-
nication case: a single pair of communicating nodes. Using
packet traces from 802.11b and 802.15.4 testbeds, we find
that single-hop TCP throughput for two links with the same
packet reception ratio can vary by as much as 320%. There-
fore, packet reception ratio measurements are not enough to
predict TCP throughput. Looking at what differs between
such links, we see that links with the same reception ratio lost
packets in very different ways. Links with higher throughput
have bursts of losses, while links with lower throughput have
random, independent losses.

If loss burstiness can affect protocol performance, we need
a way to measure it. We draw on several proposals from liter-
ature and choose µ as a metric of burstiness. µ is computed
from the Gilbert-Elliott channel model and measures aver-
age link burstiness. We find that µ, combined with the PRR,
can accurately predict TCP throughput for links with PRR
between 20% and 60%. Section 7 shows that adding µ into
consideration reduces the error of estimated TCP throughput
by 50%-99% as opposed to using only the reception ratio of
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the link. Therefore, reporting a link’s µ can give an enhanced
understanding of a wireless network.

The strong correlation that µ has with the behavior of
TCP raises the question of whether µ describes the actual
underlying dynamics in wireless links. If the Gilbert-Elliott
model accurately captures what causes these performance
variations, then it can be used in simulators to improve their
results. To test this hypothesis, we derive Gilbert-Elliott
models from measured µ values and link reception ratios.
Comparing the TCP throughput of the real links with sim-
ulated links shows that they can differ by as much as 80%.
While µ describes some link property that is correlated with
TCP performance, links do not follow a Gilbert-Elliott model.

This paper’s three research contributions are scientific and
descriptive. First, we observe that there are TCP throughput
variations that PRR cannot fully account for. Second, we
find that burstiness can explain much of these variations and
reduce throughput estimation error by 50%-99%. Third, we
find that while µ has significant deductive value in explain-
ing a network, the Gilbert-Elliott model from which it comes
does not accurately describe a link, and that more informa-
tion, such as burst lengths, is necessary for simulation.

The rest of the paper is structured as follows. Section 2
describes related work on burstiness, TCP, and modeling wire-
less links. Section 3 describes the testbeds and data traces,
as well as our TCP NewReno implementation. Section 4
shows that PRR is not enough to understand TCP’s perfor-
mance. Section 5 presents the Gilbert-Elliott model and a
method for quantifying burstiness. Section 6 examines how
µ correlates with TCP performance in 802.15.4 and 802.11b
networks. Section 8 shows that the time over which we ob-
serve a link needs to be long enough for µ to converge to a
stable value. Section 9 explores whether the TCP results im-
ply simulators can use a Gilbert-Elliott model to good effect.
Finally, Section 10 concludes and discusses future work.

2. Related Work

Although TCP was designed for wired networks, it is widely
used in the wireless domain for easy interoperability between
the wired backbone and the last mile 802.11 and cellular
networks. In addition, TCP/IP over 802.15.4 has recently
gained momentum within the embedded network industry
because to its interoperability and openness, with the IETF
forming working groups [25, 3] to support the effort.

One of the main reasons for TCP’s poor performance over
wireless is its rate adaptation for packet losses: TCP assumes
that all losses are due to congestion while in wireless net-
works losses can be because of channel errors [7]. This leads
to degraded performance of TCP over wireless.

In the past, TCP performance analysis took in to account
only the average loss rate [22, 21]. Lakshman et. al. [22] an-
alyze TCP/IP performance in networks where the bandwidth-
delay product is higher than the buffering, assuming random
packet losses. Kumar et. al. [21] also assume random packet

losses but analyze the effects of fast retransmit, fast recovery
and coarse timeouts of different types of TCP.

Ignoring correlation of reception in links can lead to in-
accurate results [32, 31, 6]. Correlation of reception in wire-
less links is typically modeled as a simple two state markov
chain [13, 28, 32], the Gilbert-Elliott model being the most
popular. Altman et. al. [6] model packet loss as a two state
Markov process and analyze moments of TCP throughput.
Yet, for simplicity, protocol designs typically assume links to
have time independent reception [1, 2] with the packet recep-
tion ratio being the only modeling parameter. For instance,
the immediate retransmissions in many MAC protocols as-
sume that a packet failure and the immediate retry attempt
have independent fates.

In practice, many wireless links are not as simple as a 2-
state markov model [18, 20]. While it is an easy model to
analyze, it is not accurate for all real links.

Jiao et. al. have shown that the two state markov model
is inadequate to model link burstiness and that wireless links
may be better modeled using inhomogenous markov chains
in which the transition probabilities are not constants[18].
Köpke et. al. use real data traces and show that simple
models like the Gilbert-Elliott model do not simulate the real
links well by comparing the run-length distributions of real
links and the links generated by simple models[20]. They
show that chaotic maps can yield far better simulation mod-
els. There is also work that shows simple models such as
the 2-state model can yield inaccurate predictions of higher
layer protocol performance [18, 12].

In this paper, we do not propose a new way to quantify
burstiness nor do we propose a new model to make simula-
tions better. We look deeply at a simple parameter, µ from
the Gilbert-Elliott model and see how correlated it is with
TCP’s performance. Unlike most work in the literature, we
start from testbed data traces to study the TCP performance.
We do not use simulations that use abstracted statistical mod-
els for the wireless channel but rather feed the real world
traces as input to the simulator.

3. Methodology

This section describes the experimental methodologies of
this paper, including the data sets, their high-level properties,
and the simulation setup used to measure TCP throughput.

3.1 TCP Implementation
To measure TCP throughput, we use a nesC implemen-

tation of the NewReno TCP stack [5, 11, 30, 16] on top of
TOSSIM [23]. TOSSIM simulates an environment of sen-
sor nodes running TinyOS [15]. TinyOS is an event-driven
operating system, specifically designed for network protocol
implementations on embedded systems. nesC is an extension
of the C language for programming in TinyOS.

To evaluate the performance of TCP, we feed datatraces of
packet receptions and losses into TOSSIM. TCP signals the
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Figure 1: Cumulative distribution of packet reception ratios in the three data sets. Most links are either poor or excellent
but there are about 20% to 30% which fall in the intermediate PRR range.

simulator for a packet transmission; the success or failure of
that packet is determined by the datatrace entry at the corre-
sponding time. We are only interested in single-hop trans-
missions in order to understand a link’s most basic behavior;
we calculate the TCP throughput in packets per second.

While the RFC documents detail most TCP specifications,
TCP sender and receiver timeout values are not explicitly
stated. The timeout values in typical implementations are
tuned for a multi-hop wired network with long Round-trip
times. These values are not applicable to the single-hop wire-
less links studied in this paper. Here we briefly explain our
choice of values for these variables.

On the sender’s side, the retransmission timeout is subject
to an upper and a lower bound. Ideally, the timeout must
be greater than the time it takes to transmit one window of
data, so not all packets in flight are retransmitted. In our
TCP implementation, the maximum congestion window is
130 packets, but this number is rarely reached. For datatraces
with 10ms interpacket interval it would take 1.3 seconds to
send a window of data, but the size of the window is usually
much smaller. Based on this, we can choose the lower bound
of the retransmission timeout as 1 second, together with 60
seconds for the upper bound.

The ACK timeout on the receiver’s side governs how long
to wait for a packet before sending an acknowledgement.
The timeout should be significantly lower than the sender’s
retransmission timeout, so the sender gets up-to-date infor-
mation when there are a lot of losses. We choose an ACK
timeout of 300ms for the data traces with 10ms interpacket
interval. Since both timeouts depend on the interval between
packet transmissions, in the following subsection we men-
tion how TCP timeout values vary between data sets.

3.2 Datasets
We use datasets from two testbeds, namely Mirage and

Roofnet.

3.2.1 802.15.4 Mirage Data
802.15.4 is an IEEE PHY-MAC standard for low power,

low data rate networks. We measure 802.15.4 using the Intel
Mirage testbed [17] - a set of indoor ceiling nodes.

10% 90%0% 100%

Intermediate Very
Good

Very
Poor

No
Link

Perfect

Packet Reception Rate

Poor Good

60%20%

Figure 2: Terminology used to describe links based on
PRR. Very poor links have a PRR < 10%, poor are
between 10% and 20%, intermediate links are between
20% and 60%, and good and very good links are > 60%.
A PRR of 100% is a perfect link.

To collect the Mirage datatraces, each node transmits broad-
cast packets every 10ms for a 1000-second duration, giving a
total of 100,000 packets. All other nodes listen and a central
server logs packet receptions. We collected data for two dif-
ferent 802.15.4 channels, channel 16 and channel 26. Chan-
nel 16 overlaps with the 802.11b transmission band and thus
is subject to external interference from Intel’s WiFi network,
while channel 26 has very little interference.

3.2.2 802.11b Roofnet Data
In addition to Mirage, we used 802.11b datatraces from

MIT’s Roofnet study [4]. The traces were collected from an
outdoor, wireless mesh network, operating at 11Mbps and
1Mbps. Similarly to Mirage, every node take its turn to
broadcast packets.

In the 11Mbps case, packets were sent as fast as possible
for 60 seconds; we subsample this data to produce 20000-
packet traces with an inter-packet interval of 2ms and total
running time of 40 seconds. Since packet transmissions take
much longer in the 1Mbps experiments, the inter-packet in-
terval is 20ms, and the the total number of packets - 3000.
Section 8 shows that a trace length of 3000 is not enough for
values of µ to converge. Therefore, in this paper we only
use the 11Mbps Roofnet data traces. Since the Roofnet and
Mirage data differ in the number of packets sent per second,
100 versus 500, we scale the TCP timeout parameters appro-
priately. This reduces the retransmission timeout upper and
lower bounds to 200ms and 12 seconds respectively, and the
ACK timeout to 60ms.
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Figure 3: Single-hop TCP throughput measurements for 802.11b and 802.15.4 datatraces. Within a given reception
ratio, throughput varies by 20 to 320%.

3.3 Link Packet Reception Ratios
Figure 1 shows the cumulative distribution of reception

ratios for the three datasets. A majority of the links have
either a very high or very low PRR. The first, rarely leave
space for improvement, while the latter might be impossible
to improve.

Between 25% and 40% of the links have a variety of PRRs
between 0.1 and 0.9. In addition, Sections 4 and 6 show that
links with PRR between 0.2 and 0.6 are of significant interest
when analyzing TCP throughput.

Figure 2 defines the terminology used in the rest of this
paper to describe the reception ratios of wireless links. We
use the terms very poor, poor, intermediate, good, very good,
or perfect. We begin by examining all links that are poor,
intermediate, and good, and then concentrate only on the in-
termediate links with PRR between 0.2 and 0.6. In the two
Mirage datasets there are about 50 single-hop intermediate
links, while in the Roofnet dataset there are over 120 inter-
mediate data traces.

4. PRR Is Not Enough

The performance of multihop flows in wireless meshes
typically falls well below what link-level bitrates would sug-
gest. For example, simple unicast routing protocols, such
as Srcr [8], exhibit approximately ten-fold reduction in TCP
throughput between single-hop paths and paths longer than
4 hops. Approaches that take advantage of the broadcast na-
ture of a wireless channel, such as ExOR’s opportunistic re-
ceptions [9], or COPE and MORE’s network coding [19, 10]
see significant (35-1000%) throughput gains on some paths,
but they still exhibit a ten-fold spectrum in performance.

The poor quality of wireless links is one possible expla-
nation for this disparity. Another explanation is the choices
made by routing protocols. It is important to first understand
how TCP performance varies for single-hop paths, before in-
vestigating performance over multi-hop paths.

Figure 3 shows results for the three datasets described in
Section 3. The TCP throughput is plotted against the link’s
PRR. As expected, PRR captures the general trend of in-

creased throughput for higher reception ratio links. However,
there are a number of cases in which two or more links have
very similar PRR, yet different TCP throughput. The major-
ity of throughput discrepancies happen in the intermediate
reception ratio range, 20% to about 60%. For example, in the
Mirage channel 26 data, a link with a PRR of 0.33 achieves
TCP throughput of barely 2 packets per second, while an-
other link with a PRR of 0.35 is at over 7 packets per second.

These two links will appear the same based on PRR alone,
yet have a difference of over 250% in TCP performance.
Similar observations are true for Channel 16 – for example
three links with a PRR of 0.37 have TCP throughputs of 3, 8,
and 14 packets per second respectively, resulting in a differ-
ence of up to 320%. In Roofnet, links with equal reception
ratio can experience throughput variations of over 200%.

Therefore, even though PRR gives a coarse-grained un-
derstanding of what the expected throughput of a link is, it is
not enough. However, in these experiments, PRR is the only
variable in the classical formula for TCP throughput, as both
RTT and MTU are fixed. The formula for predicting TCP
throughput is:

Throughput = 1.3 · MTU

RTT ·
√
Loss

There have been many modifications proposed to this equa-
tion to account for other TCP parameters such as timeouts
and the number of packets acknowleged by a single ACK [24].
One drawback that Padhye et al. [26] have addressed is that
the equation does not work well for channels with more than
2% losses.

All suggested modifications to the TCP throughput for-
mula consider a wired multi-hop packet switched network.
On the other hand, our experiments look at single-hop wire-
less TCP connections where packets are sent at regular in-
tervals, and flight size and TCP performance are not RTT-
constrained. In addition, links in the Mirage and Roofnet
datasets exhibit losses much greater than 2%, and it is not
clear how well the classic throughput equation will handle
links with such low PRRs.

Furthermore, current TCP equations assume uniformly
spaced losses. This is a worst case scenario since each loss
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Figure 4: CDF of loss burst length for two links with the
same PRR, in the Mirage testbed. Since one link has iso-
lated losses more than 95% of the time, its TCP through-
put is much lower than the other link.

maximally decreases the congestion window size. Losses on
wireless links are often correlated, making links bursty. It is
the temporal distribution of losses, in addition to their num-
ber, that affects TCP performance.

Figure 4 shows the cumulative distribution of loss burst
lengths for the two links in the Mirage channel 26 dataset,
shown in Figure 3, that have a TCP throughput difference
of 250%. In order to focus on shorter runs of losses, we
only show the x-axis up to 40 packets, capturing 99% of the
bursts. For one link, 55% of all losses happen in isolation –
the lost packet was preceded and followed by one or more
successes. For the second link, that value is over 95%. In-
tuitively, the latter link has more independent losses, and as
expected [14], is the link with lower throughput. These ob-
servations suggest that channel burstiness is a useful param-
eter that can give an insight in to protocol performance.

If such large differences in TCP throughput are possible
over single-hop paths, then it is no surprise that multi-path
mesh networks can exhibit significant variations in their per-
formance. Aguayo et al.’s study of Roofnet [4] found that
many of its links had bursty behavior, and studies of 802.15.4
have found similar behavior [29].

Therefore, in such networks, PRR is not enough to accu-
rately characterize links. Instead, we need to expand the set
of properties we measure and report on wireless links – our
experimental lexicon. We need to find a suitable parameter
for reporting burstiness in addition to other measurements.
First, we must find the best way to quantify burstiness and
then understand how this new parameter alters TCP through-
put predictions.

5. Quantifying Burstiness

This section introduces the Gilbert-Elliott channel model
that has been widely used in the RF community. It is a
method for modeling channel memory, which has a direct
implication on its burstiness. Although most literature treats

Bad Good

b

g

1-b1-g

µ = 1 - b - g

Figure 5: The Gilbert-Elliott model of a wireless link.

the Gilbert-Elliott model as a bit model, we use it as a packet
model, i.e. we model bursts of packet errors and successes
rather bursts of bit errors and successes.

5.1 Defining Burstiness
In simple terms, link burstiness is the property of hav-

ing temporally correlated losses and successes on a wireless
link. A good first step towards defining what a bursty link
looks like is to define what a bursty link does not look like.
A link is not bursty when its packet successes and failures
are not temporally correlated, i.e. the success and failure of
each packet delivery is independent of all previous and fu-
ture packet transmissions. While such a link will have runs
of successes and failures, the lengths of these runs will fol-
low a geometric distribution.

A bursty link is one where there is a positive correlation
between similar packet events. Given a reception ratio R, the
probability of receiving a second packet after one arrives suc-
cessfully is greater than R, while the probability of receiving
a second packet after one does not arrive successfully is less
than R.

It is also possible for a link to be oscillatory. In an os-
cillatory link, there is a negative correlation between similar
packet events. Links that quickly swing back and forth be-
tween periods of good and bad reception can introduce this
behavior. Receiving a packet makes it more likely that a pe-
riod of bad reception is about to follow and not receiving a
packet makes it more likely that a period of good reception
is about to occur.

5.2 Gilbert-Elliott Model
The Gilbert-Elliott model of a wireless link, shown in Fig-

ure 5 is a two-state Markov process. The states of the process
correspond to the link being in a “good” state (zero probabil-
ity of packet errors) or the link being in a “bad” state (non-
zero probabiity of packet errors). The Gilbert-Elliott model
has three parameters, g, the probability of transitioning to
the good state from the bad state; b, the probability of tran-
sitioning to the bad state from the good state; and h, the loss
rate in the bad state. The model assumes the good state has
no errors and many analytical formulations assume, for sim-
plicity, that the bad state loses all packets (h = 100%). The
rest of this paper assumes h equal to 100%.

The memory of the Gilbert-Elliott model is given by a
parameter µ. A model’s µ, defined as 1− g − b, has a direct
implication on the burstiness of the channel. If µ is zero, then
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b = (1−g) and g = (1−b). Put another way, the probability
of transitioning to the good or bad state is independent of
what state the model is in. As µ approaches 1, the probability
of transitioning away from states approaches zero, causing
the links to be very bursty. As µ approaches -1, the states
are more likely to transition than to stay the same, causing
oscillatory behavior.

In the case where h = 100%, the parameters g and b are
the probability of a successful packet following a packet fail-
ure and the probability of a packet failure following a suc-
cessful packet. Encoding packet delivery as a binary string,
g = |01|

|01|+|00| and b = |10|
|10|+|11| .

5.3 Calculating µ For Empirical Channels
µ can be calculated for empirical channels from the data

traces outlined in Section 3. As mentioned earlier, we use
a simplified Gilbert-Elliott model where each failure corre-
sponds to the bad state and each success corresponds to the
good state. Looking at empirical data traces can give all state
transitions for this model by labeling each failure as bad state
and success as good state. States can then be encoded by bi-
nary numbers with 0 denoting bad state and 1 denoting good
state. For example, a good to bad state transition will corre-
spond to the occurance of a “10” in the bit stream and a bad
to good transition to the occurance of a “01”. Thus, using
the packet delivery data encoded as a binary string and the
equations for g and b from above, we can find g and b and
also µ = 1− g − b.

6. TCP Performance

This section investigates the effect of burstiness on TCP
performance for different testbeds. The TCP simulator (ex-
plained in Section 3) is run on packet traces obtained for the
various testbeds, Mirage on Channels 26 and 16 and Roofnet,
to evaluate TCP performance in packets per second.

In order to measure the effect of burstiness for different
links, we synthesize an independent link with the same PRR
as the empirical link under consideration. For an indepen-
dent link, each packet has a probability of success equal to
the PRR of the link,regardless of the fate of previous or fu-
ture packets. Thus, to generate data for the independent link,
we generate a bit pattern where each bit is 1 (meaning suc-
cess) with a probability equal to PRR and 0 otherwise. The
length of the synthesized trace is made equal to the length
of the empirical trace for each link. For comparison of TCP
throughput, the TCP simulator is then run on the data traces
for the empirical link and the corresponding synthesized in-
dependent link and difference in throughput for the bursty
link is noted.

6.1 Initial Observations
Figure 6 shows the plot of TCP throughput difference for

the Mirage channel 26 trace for all links with PRRs between
10% and 90%. TCP throughput difference for various links
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Figure 6: TCP throughput difference compared to a syn-
thesized independent link for links with different µ and
PRRs for Channel 26 Mirage testbed.
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Figure 7: TCP throughput difference compared to a syn-
thesized independent link for links with different µ and
PRRs for the Roofnet testbed running at 11mbps.

is measured in comparison to the synthesized independent
links for the same PRR and plotted versus the µ values for
these links. The PRR levels are coded in shades of gray.
Figure 7 shows the same plot for Roofnet data. The general
trend of increasing throughput with increasing µ is visible in
both plots, but there are a lot of outliers.

The outliers tend to occur at high PRRs (> 60%), where
the difference is less than expected and very low PRRs (<
20%), where the difference is greater than expected. A better
understanding of behavior of the Gilbert-Elliott model for
high and low PRRs can explain the existance of outliers for
these PRR values.

6.2 Gilbert-Elliott Model Behavior On Extreme
PRRs

The increase in TCP throughput as an effect of burstiness
is the result of an increase in the number and the length of
runs of successes in a link trace compared to the independent
link with the same PRR. As an approximation, we can com-
pare the difference by looking at the probability of 2 consec-
utive successes in a trace for the two cases. To calculate this
probability for the Gilbert-Elliott model explained in Section
5, we need to calculate the values of parameters g and b and

6



-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Mu

-100%

-50%

0%

50%

100%

150%

200%

250%

300%

350%
T
h
ro

u
g
h
p
u
t 

D
if
fe

re
n
ce

0.24

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

Figure 8: TCP throughput difference compared to a syn-
thesized independent link for links with different µ and
intermediate links for channel 26 Mirage testbed.

the steady state probabilities of being in the good and the bad
states in terms of PRR and µ.

We call the steady state probabilities of being in the good
and the bad statesG andB respectively. Then, G = PRR and
B = 1 - PRR. Further, in steady state, G ∗ b = B ∗ g. Using
these and µ = 1− b− g, we get b = (1− PRR) ∗ (1− µ)
and g = PRR ∗ (1 − µ). The probability of 2 consecutive
successes is given by G ∗ (1− b).

For a PRR of 0.1 and µ of 0.6, the probability of 2 con-
secutive successes is 0.06 for the bursty link and 0.01 for the
independent link. This represents a large percentage increase
in the probability of getting a burst and correspondingly, a
large increase in the observed TCP throughput difference.

For a PRR of 0.9 and µ of 0.6, the probability of 2 con-
secutive successes is 0.864 for the bursty link and 0.81 for
the independent link. This represents a very small percent-
age increase in the probability of getting a burst and corre-
spondingly, a small increase in the observed TCP throughput
difference. Therefore very high and very low PRR values do
not adhere to the general trend observed for TCP throughput
difference.

6.3 Observations For Intermediate Links
Figure 8 shows the plot of TCP throughput difference

for intermediate links for channel 26 on the Mirage testbed.
These links show a clear correlation between increasing through-
put difference and increasing µ. Figure 9 shows the same
plot for Mirage channel 16. Figure 10 shows the TCP through-
put difference with µ for the Roofnet traces. In all three
testbeds, an increase in µ has an accompanying increase in
TCP throughput: this effect appears across different wireless
channels in the 2.4Ghz band and across different data rates.

7. Data Fitting Analysis

Section 4 observed large variations of TCP throughput at
intermediate PRR values. Section 6 showed that the varia-
tions in TCP throughput can be attributed to link burstiness
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Figure 9: TCP throughput difference compared to a syn-
thesized independent link for links with different µ and
intermediate links for channel 16 Mirage testbed.
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Figure 10: TCP throughput difference compared to a
synthesized independent link for links with different µ
and intermediate links for Roofnet testbed running at
11mbps.

and the Gilbert-Elliott channel memory parameter µ can be
used to quantify this burstiness.

To evaluate the effect of the calculated µ on TCP through-
put, this section looks at the accuracy of estimation of TCP
throughput using only PRR and compares this with the accu-
racy obtained by using both PRR and µ. TCP estimates are
calculated by finding the best fits based on the least L1 norm
of error1. L1 norm is used rather than Least Squares because
it is more robust to outliers.

The TCP throughput expression in Section 4 shows the
throughput to be proportional to the inverse square root of
the loss rate, i.e. ∝ 1√

1−PRR . As discussed before, this ex-
pression may not be applicable to single hop links with high
loss rates. Our experiments have also shown that a second or-
der estimate provides a good fit for observed TCP throughput
based on PRR values. Comparing best fits for TCP through-
put for linear fit, quadratic fit and fit with 1√

1−PRR shows the

1L1 norm of the error is the sum of the absolute values of error at
each data point
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(a) Mirage - Channel 26 (b) Mirage - Channel 16 (c) Roofnet

Figure 11: Best fit of observed TCP throughput based on corresponding link PRR values for intermediate links in
different testbeds. The x-axis is the estimate of TCP throughput based on observed PRR and y-axis is the actual TCP
throughput

(a) Mirage - Channel 26 (b) Mirage - Channel 16 (c) Roofnet

Figure 12: Best second-order fit of observed TCP throughput based on corresponding link PRR values and µ values for
PRRs (between 20% and 60%) for different testbeds. The x-axis is the second-order estimate of TCP throughput based
on the link PRR and µ and y-axis is the actual TCP throughput

best fit average normalized errors2 are within 10% of each
other. For example, the linear, quadratic and ∝ 1√

1−PRR fits
for Mirage Channel 26 data trace have average normalized
errors equal to 0.0389, 0.0419, 0.0396 respectively. Includ-
ing all three terms in a fit provides the best PRR based fit. In
this case, the TCP throughput estimate is given by:

a ∗ 1√
1− PRR

+ b ∗ PRR+ c ∗ PRR2 + d

Figure 11 shows the best PRR based fit estimates of TCP
throughputs for the different testbeds for intermediate links.
The estimates are plotted against the observed TCP through-
put values.

Based on the fit terms for PRR, a similar set of terms for
µ, i.e. 1√

1−µ , µ and µ2 can be used for fitting TCP through-
put readings. Taking all terms for PRR and µ and combina-
tions of these terms (for example PRR.µ, PRR2. 1√

1−µ etc.)

2The errors are normalized with respect to packets per second at
the link layer and averaged over the number of links. Packets per
second on the link layer are 500 for the Roofnet traces and 100 for
the Mirage traces.

48.97%69.88%1.911.133.74Mirage Ch26

58.16%99.49%1.300.01593.12Mirage Ch16

2nd

order
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2nd

order
15 term

PRR and mu
PRR 
Only

54.45%60.41%1.961.704.30Roofnet

% ImprovementEstimation Error (x10−2)
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Figure 13: Average error in estimating TCP throughput
using only PRR and using both PRR and µ.

gives an expression with 15 terms for fitting TCP through-
put. A best fit over this expression gives a significant reduc-
tion in estimation error as shown in Figure 13. Fitting over
15 parameters and subsequently reporting those parameters
may not be feasible in practice. The second order expression
based on µ and PRR can provide an approximation for fit-
ting TCP throughput data. In its most general form, a second
order fit for the TCP throughput based on both PRR and µ is

8



given by an equation of the form:

a ∗ PRR+ b ∗ PRR2 + c ∗ µ+ d ∗ µ2 + e ∗ PRR ∗ µ+ f

where a, b, c, d, e and f are constant coefficients. Figure 12
shows the best PRR and µ based second order fit estimates
of TCP throughputs for the different testbeds and intermedi-
ate PRRs. As can be seen from the figures, incorporating µ
for estimating TCP throughput improves the fit considerably
even with the second order approximate fit being used. Nu-
merically, incorporating µ into the estimate reduces the L1
norm of the error by more than 60% by using the 15 term
expression and by approximately 50% by using the second
order fit expression. Figure 13 summarizes the results for the
average error in estimation for different datasets using only
PRR and both PRR and µ. The table shows results from both
using the 15 term expression combining µ and PRR and the
second order approximation. The percentage improvement
shown is improvement of each fit over the PRR only fit. The
average errors are normalized based on the link level packets
per second and averaged over the number of links.

An observation in the best fitting process is that the coeffi-
cients for the fits over different traces vary significantly. This
can mean that the nature of dependance of TCP throughput
on PRR and µ changes across different rates and protocols.
However, it is clear that including µ into an expression for
estimating TCP throughput over a wireless link can signif-
icantly improve the estimate. The expressions used in this
section are all heuristic and only serve to compare the es-
timation qualities of PRR alone and PRR combined with µ.
These results point to the fact that deriving analytical expres-
sions for TCP throughput on wireless channels should take a
measure of channel burstiness into account.

8. Convergence of µ

This section investigates the number of packets needed to
measure µ. For short packet traces containing 6000 packets,
the throughput differences in TCP do not form a very good
fit with µ and PRR.

This observation can be explained by looking at some
specific links in the Roofnet datasets with a reduced trace
length. The traces are sub-sampled at a packet interval of
10ms to reduce the length of each trace to 6000 packets. Fig-
ure 14 shows the TCP throughput difference versus µ for the
sub-sampled links. Two links, marked as points A and B
in the figure, have similar values for PRR and µ but show
very different TCP throughput values. Figure 15 shows the
distribution for the bursts of successes for A and B. The
larger values of the distribution occuring for smaller bursts
have been capped off to look at the infrequent occurances
of longer bursts. A shows a couple of instances of very long
bursts of successes, one being 117 packets long and the other
158 packets long. These long bursts are missing from the
trace of B. Very long bursts, though infrequent, can cause
a considerable improvement in TCP throughput. Since the
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Figure 14: TCP throughput difference for sub-sampled
data compared to a synthesized independent link for
links with different µ and intermediate PRRs for Roofnet
testbed. The sub-sampling interval is 10 ms
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Figure 15: Distribution of burst lengths for 2 links. Link
A has two bursts of successes longer than 100 packets.
Link B does not exhibit any burst longer than 100 pack-
ets

overall number of packets is not too large (6000 packets),
the effect of such a burst does not get completely amortized.

These observations show that the length of the sub-sampled
traces (6000 packets) may not be enough for the values of
µ and PRR to converge for a given link. To validate this
claim, we divide the Mirage testbed packet traces containing
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Figure 16: Root mean square of deviations from the over-
all trace µ for µmeasured over all chunks of 6000 packets
in each trace plotted against the overall trace µ.
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Figure 17: A set of representative links for Mirage chan-
nel 26 showing that in most cases the value of µ levels off
as the number of packets exceeds 40000. There are a few
outliers that have their µ change towards the very end of
the data trace, but we see this in under 10% of all Mirage
links.

100,000 packets each in chunks of 6000 packets and com-
pute the deviation of the µ calculated for every chunk from
the µ calculated over the entire trace. The overall deviation
for a trace is calculated as the root mean square of the devi-
ation values for all the chunks in a trace. Figure 16 shows
the deviation values for different traces against their respec-
tive µ values. The deviation values in the figure show that
chunks of 6000 packets in the traces give very different val-
ues for µ compared to those obtained for the whole 100,000
packet trace. This confirms the claim that 6000 packets are
not enough for the values of µ and PRR to converge for wire-
less links.

While Figure 16 points to the fact that 6000 packets are
not enough, it does not immediately show that longer traces
do have converging values for µ. Therefore, we look at how
µ changes as more and more packets are added to a trace.
Using the empirical data from Mirage channel 26, we com-
pute µ for the first 1000, 2000, 3000 up to 100000 packets.
Overall, the results show that after about 40000 packets µ
begins to stabilize.
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Figure 18: A set of representative links for Roofnet
11Mbps showing that in most cases the value of µ lev-
els off as the number of packets exceeds 10000. There are
a few outliers that have their µ change towards the very
end of the data trace, but we see this in under 10% of all
Roofnet links.

Figure 17 presents data from five links that serve as a rep-
resentative subset of all Mirage links. Up until about 40000
packets, there is a significant variation in µ values that begins
to level off afterwards. For three of the links in the figure, it
is not hard to see that µ stabilizes; for the other two, how-
ever, kinks appear at the very end of the trace. This happens
in the last 8000 packets or so. We observe similar behavior
in under 10% of all empirical links, while all others follow
the pattern of stabilizing after 40000 to 50000 packets. One
possible explanation for the strange behavor of those outlier
links is that they enter a more bursty state late in the data
collection experiment, but since we stop observing them at
100000 packets we do not see the expected stabilization of
µ. Figure 18 shows the representative links for the Roofnet
testbed. In this case, we observe that the value of mu con-
verges for trace lengths greater than 10000 packets.

The length of packet traces is critical for convergence of
the parameter µ and the estimation of TCP throughput using
µ and PRR. The 3000 packet long traces available for the
Roofnet testbed running at 1Mbps are not long enough for
the value of µ to converge because of which they have been
omitted from the TCP analysis in this paper.

9. Modeling with µ

Previous sections showed that for both 802.11b and 802.15.4
datatraces, the values of µ have strong correlation with TCP
throughput. A natural question is whether the Gilbert-Elliott
model, which is the basis for µ, can be used to model links
with behavior similar to that of empirically observed ones.
This section explores whether given µ and reception ratio,
the Gilbert-Elliott model simulates links accurately.

9.1 Gilbert-Elliott Synthetic Links
Section 5 presented how µ can be calculated from a data

trace of packet receptions and failures. With the Gilbert-
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Elliott model, the reverse is also possible. Knowing PRR
and µ is enough to give the transition probabilities for the
two-state Markov chain and these probabilities are enough
to produce a simulated link of losses and successes. If the
Gilbert-Elliot model is a valid approach to simulating links,
we expect to see similar TCP performance for pairs of em-
pirical and simulated links with equal PRR and µ values.

9.2 Results
Figure 19 compares the TCP throughput values for the

empirical and simulated links for the different testbeds. In all
three figures, the x-axis shows the empirical TCP throughput
and the y-axis the throughput for the link generated by the
Gilbert-Elliott model. Note that since the Roofnet data is
every 2ms instead of 10ms, the y-axis goes up to 500 packets
per second. The x = y is shown for reference – datapoints on
the line denote matched performance between simulated and
real-world links. This figure shows that synthesized links
perform very differently compared to the empirical data they
try to simulate.

For the Mirage channel 26 dataset, most datapoints fall
under the x = y line; simulated links have considerably
lower TCP throughput. This leads to the conclusion that
links modeled using Gilbert-Elliott are not only quite differ-
ent from empirical links, but also have a tendency to under-
perform. Only about 12% of all links are within 10% of their
empirical partners. In the extreme cases, synthetic links can
report a throughput which is as much as 80% less than that
of real testbed measurements.

The results for Mirage channel 16 follow the same trend.
About 50% of the links are within 10% of the empirical data
traces, while many have lower TCP throughput, as much as
60% less. In the 802.11b experiments, we again see sim-
ulated links with throughput that greately differs from the
expected – up to 80%.

Therefore while µ, as computed from a testbed trace, has
a good predictive value for TCP throughput, the reverse is
not true: simulation of a link using µ and the Gilbert-Elliott
model is not accurate. More specifically, for our throughput
metric, synthetic links consistently underperform compared
to the empirical ones.

It must be that µ and TCP are correlated to a third vari-
able, a characteristic that is currently missing from our ob-
servations. More specifically, µ does not capture information
about infrequently occuring long bursts of successes. This is
a key ingredient in understanding the throughput that TCP’s
windowing achieves due to the Additive Increase/Multiplica-
tive Decrease scheme of congestion control. Very long bursts
allow large size of the congestion window, larger flight size,
and therefore, increased throughput.

Figure 20 shows the length of the longest burst of suc-
cesses for each empirical link and its corresponding simu-
lated link. If the Gilbert-Elliott model were to be used for
simulating wireless link behavior, we would expect data-
points close to the 45-degree line. In reality, we discover
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Figure 20: About 50% of empirical links in the Mirage
channel 26 data have maximum burst lengths that are
larger than the highest burst length the Gilbert-Elliott
model ever produces.

that many empirical links have long bursts of successes that
the Gilbert-Elliott model is unable to reproduce.

For example, over all 54 links from the Mirage channel 26
data, the longest burst created by the Gilbert-Elliott model is
149. At the same time, almost 50% of the empirical links
have bursts much longer than that, up to 600 packets.

This observation explains why a Gilbert-Elliott synthetic
link cannot achieve a TCP throughput as high as that of an
empirical link. A single burst on the order of hundreds of
packets can cause a big difference in TCP’s windowing be-
havior. Therefore, to be able to model and simulate links’
behavior in terms of burstiness, future work must combine
the current version of µwith information about burst lengths.

10. Conclusion

This paper takes a first step towards extending the existing
lexicon for describing wireless networks. While high-level
metrics such as throughput and reception ratio can provide
some coarse grained information, they are not enough to ac-
curately describe a network. In Section 4 we saw that multi-
ple TCP throughput values map to the same PRR, and mul-
tiple PRRs to the same observed TCP performance. There-
fore, simply reporting one or the other can lead to misleading
conclusions.

Observing links’ burstiness, i.e. the temporal correlations
of packet successes and losses, allowed us to refine our un-
derstanding of link behavior. We used µ as a metric of bursti-
ness and discovered that, when combined with PRR, it can
reduce estimation error of TCP throughput by approximately
50%. These results indicate that reporting a link burstiness
metric along with other network parameters can give a better
estimate of network performance.

While µ has a strong deductive value when computed on
empirical links of intermediate reception ratios, it does not
lend itself to simulations. Section 9 showed that using the
Gilbert-Elliot model to generate synthetic links with given
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(a) Mirage Channel 26
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(b) Mirage Channel 16
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Figure 19: TCP throughput for the Gilbert-Elliott synthetic and empirical links for the three datasets. Most links
generated using the Gilbert-Elliott model fail to achieve the TCP throughput that empirical links with the same PRR
and µ have.

µ and PRR does not accurately simulate TCP throughput.
There are dynamics in the links that these two parameters do
not capture.

One characteristic of links that is not reflected in µ is the
occurance of infrequent, very long bursts. Therefore, µ must
evolve in a burstiness metric that captures more than just the
number of state transitions; it needs to accurately reflect the
distribution of burst lengths, including extremely long bursts.
In addition, this new burstiness metric should be able to gen-
eralize for extremely low or high PRR values, which µ does
not.
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