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Abstract
This paper presents Emerson, a new programming system
for scripting objects in user-extensible virtual worlds such as
Second Life, Active Worlds, Open Wonderland, etc. Emer-
son’s primary goal is to make it easy for novice programmers
to write and deploy interesting applications. Scripting appli-
cations for these worlds is difficult due to two characteris-
tics: the worlds must scale to millions of users and are there-
fore distributed, and there is no central authority or design
so interaction is mostly between mutually untrusting appli-
cations.

To simplify scripting for novices, Emerson employs two
abstractions: multi-presencing and execution sandboxes.
Multi-presencing allows a single program to centrally con-
trol what seem to be many distributed geometric objects.
Execution sandboxes allow safely running application code
provided by another object, borrowing the execution and
deployment model of modern web applications.

Emerson itself is implemented as a scripting plugin for
the Sirikata open source virtual world platform. We evaluate
the benefits of its design by describing several application
examples. Through these examples, we explore the interac-
tions between sandboxing and multi-presencing as well as
their implications and discuss potential future authentication
mechanisms that would make secure in-world application
development more accessible.

Categories and Subject Descriptors D.2.6 [Programming
Environments]: Interactive Environments, Graphical Envi-
ronments; D.3.2 [Language Classifications]: Specialized
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application languages; I.6.8 [Types of Simulation]: Dis-
tributed, Gaming

Keywords Virtual Worlds, Scripting, Sandboxing, Actors,
Metaverses, Distributed Programming, Novice Program-
ming

1. Introduction
Virtual worlds are shared 3D spaces. Users log into these
spaces as “avatars,” which are in-world representations
of themselves. Through their avatars, users interact with
each other and other objects populating the world to play
games [29], create art [31, 33], socialize [13, 41], learn [20],
and even engage in therapy [23].

Virtual world objects are controlled by scripts, code
which defines their behaviors. For example, a virtual car has
code for accelerating when an avatar presses its gas pedal
or to blare an alarm when a stranger tries to open its door.
Scripts transform pretty but lifeless worlds into dynamic,
evolving, and interesting ones.

Many of the most successful virtual worlds today – World
of Warcraft [42], EVE Online [11], and The Sims [37] – have
centrally authored code and applications. These worlds re-
semble ISPs of the early 1990s, such as Prodigy and Amer-
ica Online, which centrally controlled and curated content.
Large teams of professionals carefully create and manicure
the behaviors of all objects in the world. For example, at one
point in 2009 World of Warcraft had at least 37 designers
creating player classes, professions, levels, and events, and
had generated 70,000 spells and 40,000 non-player charac-
ters since 2001 [35]. This approach is costly and can limit
both a world’s scope and its character.

Our goal is to build virtual worlds more like the Web
of today, called metaverses, where anyone, even novices,
can add new applications or services. Applications in virtual
worlds are collections of objects that are scripted to act in
concert, providing new and interesting experiences for other
inhabitants of the world. For example, a virtual art gallery
may alter its exhibit dynamically in response to avatars’
viewing it, or teams of monsters may coordinates attacks



(a) Standard approach

(b) Emerson approach

Figure 1. Emerson changes trust and locality boundaries for
scripts. With these more flexible boundaries, one script can
control an entire team and the code for the soccer game per-
forms less messaging, making the entire application simpler.

on a virtual citadel. While a few of today’s virtual worlds,
such as Second Life, make it easy to script individual ob-
jects, building applications remains a significant challenge
for even experienced developers.

Just as anyone can create a dynamic web page, any novice
should be able to build simple applications in a metaverse.
Two characteristics of metaverses make application develop-
ment hard:

Size: To scale to billions of virtual objects, object state and
code are distributed across many servers. Because virtual
worlds are interactive, applications must remain responsive
in the face of latency. Distributed application state may lead
to consistency challenges. Even without state replication,
applications must handle message reordering and loss. An
otherwise simple application must handle all the challenges
and edge cases of a distributed system.

No Central Authority: Objects scripted by different users
require protocol agreement to interact, but without central
control it is impossible to agree on all protocols in advance.
How can an application developer ensure his/her application
objects will be able to interact with any user? Further, mu-
tually untrusting objects must interact securely, for instance
without leaking sensitive state stored within a script.

Emerson is a new programming system for metaverses
that aims to make it easy for users to write interactive ap-
plications in virtual worlds. Built on top of the open-source
Sirikata virtual world platform, it is currently undergoing
controlled testing with a group of eleven undergraduate stu-
dents. Earlier work on Emerson focused on its use of pro-

totypic inheritance for virtual world object creation and its,
since deprecated, messaging syntax [4]. This paper focuses
instead on mechanisms for Emerson that provide better con-
trol over where code is executed and support execution of
untrusted code. These mechanisms make more code operate
locally and make applications written in Emerson simpler
than their equivalent versions in other systems.

Metaverses today take the straightforward approach to-
wards trust and locality shown in Figure 1(a). The solid lines
show script, and therefore locality, boundaries: interaction
between scripts requires messaging, even for objects that are
scripted for the same application. Modern systems manage
locality boundaries in different ways. For instance, as de-
scribed in Section 4, Second Life provides an abstraction
for “linking” objects, but constrains it in such a way that
makes it unusable for many applications. Emerson simpli-
fies code involving multiple virtual world objects with multi-
presencing, which allows one script to control multiple vir-
tual world objects, or presences. As shown in Figure 1(b),
a single Emerson script can control multiple virtual world
objects. In a broader context, multi-presencing decouples lo-
cality boundaries from separately addressable interfaces.

The trust boundary, shown with dotted lines in Fig-
ure 1(a), in today’s systems is tightly coupled to the locality
boundary: all code within an object’s execution environment
is fully trusted and all code outside is untrusted. Emerson
provides sandboxes for executing untrusted code locally,
much as a browser allows a web site to execute JavaScript
locally. Section 3 shows how this simplifies common inter-
actions between applications and their users. For example,
instead of sending all input events, such as a user click-
ing and moving a chess piece, back to the chess game as
messages, input handling becomes much simpler and more
efficient when performed locally on the avatar’s application.
Figure 1(b) shows how the trust boundary for an Emerson
script can extend into another script and across the locality
boundary.

These modifications make code which would otherwise
be distributed and challenging to write become simple,
single-threaded, and accessible to novices. While the chal-
lenges of developing code for execution in a large-scale
system and without central authority cannot be completely
avoided, they can be greatly mitigated, making application
writing in virtual worlds easier and more accessible for
novices.

The remainder of this paper describes Emerson in greater
detail, focusing on the features which make application de-
velopment simpler and more accessible to novices. Sec-
tions 2 and 3 give background on the virtual world plat-
form on which Emerson is built and a motivating exam-
ple, respectively. Section 4 gives a detailed description of
multi-presencing. Section 5 discusses Emerson sandboxing
and proposes a mechanism for authenticated messages in the
Emerson programming system. Section 6 describes Emer-
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Figure 2. An example of a Sirikata world. Multiple appli-
cation hosts, each in a different administrative domain, con-
nects to the shared space.

son’s programming model and runtime in more detail. Sec-
tion 7 describes related work and Section 8 concludes.

2. System Background
Emerson is a programming system built as a plugin to
Sirikata [32], a platform for large-scale, federated, seam-
less virtual worlds. Like virtual worlds in general, at their
core, worlds based on Sirikata are collections of distributed,
message-passing objects. Emerson drives the simulated be-
havior of these objects.

Figure 2 shows the components of Sirikata relevant to
Emerson. Each application is an executing script, and when
initialized has no connections to the world. Applications
connect to a space and obtain a presence. Presences give
applications a physical manifestation within the space – for
example, a building, bicycle, or avatar.

Each presence has properties representing its state in the
world, such as position, orientation, mesh, queries for other
objects, and a unique identifier for messaging. The space
owns and controls these properties, and an application’s
script must explicitly request the space to change them.
Two applications, even those running on the same applica-
tion host, cannot communicate directly. Instead, they learn
about each others’ presences through geometric queries to
the space. Using the identifiers returned by these queries,
applications communicate by exchanging messages between
presences in the same space, much in the same way that vats
in E send messages to objects in other vats [21].

Emerson does not assume a one-to-one mapping between
applications and presences. This enables multi-presencing,
where an application acquires more than one presence in
a space. Section 4 motivates and discusses this feature in
further depth.

As Figure 2 shows, applications are hosted separately
from the space, allowing multiple domains to connect to
the same world: Sirikata virtual worlds are federated. Any
presence encountered in a space is potentially running under
a different administrative domain.
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Figure 3. A simple introduction protocol combined with
sandboxing allows processing of input to be performed
within the player’s script, simplifying the entire chess ap-
plication. The solid arrows show messages from the original
scripts while dashed arrow shows message from the sand-
box.

3. Motivating Example
To demonstrate the challenges of writing a virtual world
application and how Emerson addresses them, this section
describes a simple example: a chess game. Avatars approach
the chessboard and can join the game. When a player makes
a move, his/her avatar animates to move the piece on the
board. The game enforces valid moves, tests for the end of
the game, and resets the pieces for the next game.

A scripter faces many challenges when building even this
seemingly simple game. First, how do the chess application
and avatar, which are developed independently, begin com-
municating in order to start a game?

Second, once communication is initiated, how does the
chess game coordinate the movement of the many presences
– the board and all the pieces – involved in the game? Finally,
how can the chess game handle interaction with the player,
converting basic interaction such as clicks into meaningful
actions like moving pieces?

3.1 Bootstrapping an Application
The core Sirikata system only implements a small number
of protocols, which applications use to perform the most
primitive tasks: moving about the world, querying for other
presences, and sending and receiving messages. Using these
primitives, how can an avatar request to join the chess game?
Agreeing on a chess protocol ahead of time is too inflexible,
making it impossible to add truly novel applications to the
world.

Instead, Emerson provides a simple introduction protocol
to bootstrap interactions. An introduction message indicates
to the receiving application that a presence is interested in
further interaction, putting the burden of requesting interac-



tion on the “user” of an application. For avatars, this protocol
is initiated by clicking on an object. For the chess example,
Figure 3 shows how this translates into an introduction mes-
sage which is sent to the chessboard.

3.2 Coordinating Many Presences
The chess game application contains many presences, all of
which must move independently. How does the developer
script and coordinate these presences? It must control their
movement, reset them when a game completes, and destroy
them when the game is “packed up.”

Most systems use a straightforward, and perhaps the most
intuitive, approach in which locality boundaries are inflexi-
ble and tied to exactly one presence, as shown by the solid
lines in Figure 1(a). Messaging must be used to control
the pieces and send move requests back to the board to be
checked by the game logic. In essence, the chess game is
a small distributed system, which comes with all the same
challenges. What would be simple, single-threaded, syn-
chronous code in a desktop chess application now requires a
much more complicated distributed implementation.

Emerson decouples the presence and application abstrac-
tions, allowing multi-presencing, in which one application
with a single script can control multiple presences. Although
presences appear independent, the same script controls all of
them and, in the chess example, the game state can be cen-
tralized. The game logic and event handling become much
simpler since all actions can be taken directly. For example,
to reset the game, the script simply iterates over all pieces
and resets their positions, a much simpler approach than all
the messaging and acknowledgements that would otherwise
be required. Multi-presencing and its implications on script-
ing are described in detail in Section 4.

3.3 Controlling an Application
After introduction, how does the rest of the interaction play
out? At first glance it seems that simple touch events would
work by triggering messages to the application: moves could
be indicated by clicking on a piece and then on a space on
the board. But this approach is actually quite challenging be-
cause it requires coordination between the player, the pieces,
and the board. The chess script must handle many edge cases
involving message loss, reordering, and latency.

The problem is that only the most primitive events from
mouse input are sent from the avatar. If the avatar’s script
could understand the intention of the sequence of click
events, it could convert them into a single message to the
chessboard requesting a move. However, the avatar was not
aware of the game when it was scripted, so it cannot generate
such a message.

Emerson addresses this problem with sandboxes. Sand-
boxes allow a hosting application to safely execute an Emer-
son script received from another application. In the chess ex-
ample, the chess board sends a message containing a sand-
box request, including an application description, capabili-

ties requested for the sandbox, and code to execute within
the new sandbox. When the user accepts, the code element
of the sandbox request is executed within a newly created
sandbox, and begins listening for user interface events, a ca-
pability included as part of the request. The code processes
these events and only sends messages back to the board
about moves, rather than individual clicks. All input is han-
dled locally and in order, so no ambiguity or errors due to
distribution are possible.

By limiting the local state and operations on presences
available to code within the sandbox, an application can con-
trol the abilities of sandboxed code. In this way, an appli-
cation can protect sensitive data in its own script, restrict
sandboxed code from performing malicious actions with a
presence, and avoid accidental interference with the original
script. Sandboxes are described in more detail in Section 5.

Sandboxes do not completely remove the need for writ-
ing distributed code, but they do make it easier in two im-
portant ways. First, all application code is developed in a
single application, but some may be executed on other appli-
cations. Second, the developer can choose what events and
actions operate between applications and require messages.
Importantly, delegating this decision to the scripter allows
the application developer to choose the smallest possible set
of messages for minimal implementation complexity or the
set resulting in the least network traffic for optimal perfor-
mance.

3.4 Summary
The chess example shows how complicated even a simple
application can become in current systems. Emerson pro-
poses three mechanisms to reduce the difficulty of develop-
ing application: a global introduction protocol, sandboxing,
and multi-presencing. The remaining sections give a more
complete description of Emerson and explore these features
and their interactions in more detail.

4. Multi-presencing
All but the simplest applications involve multiple presences
interacting with each other and the user. A chess game re-
quires many pieces and the chess board. A bank provides
many ATM locations throughout the world. An art vendor
has multiple galleries with many pieces of art.

Different systems deal with coordination of many pres-
ences differently. UnrealScript is designed to run in a sin-
gle, trusted process and so treats the entire world as one ap-
plication with many presences. An UnrealScript developer
makes direct function calls to control any presence in the
world [36]. The ordering, latency, and failure challenges de-
scribed in Section 3.2 do not apply because the world is con-
tained in a single process. This constraint limits the scale of
such worlds and disallows untrusted scripters from partici-
pating in programming the world.
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Figure 4. Multi-presencing greatly simplifies code: a single script drives many presences and the application does not require
any messaging to control and coordinate its own presences.

Scripts in Second Life are associated with a single “prim-
itive,” but unlike Emerson each primitive can be controlled
by multiple scripts. A script can also reach beyond its prim-
itive through a “link set,” a collection primitives which have
agreed to act in coordination [30]. Link sets have a num-
ber of restrictions. First, no more than 256 primitives can
be grouped and they all must be contained within a bound-
ing sphere of diameter of 56 meters [17]. A chess game fits
within these constraints, but a game of Go can use up to 361
pieces. An ATM application is not useful if it cannot spread
ATMs more than 50m apart.

Emerson does not limit the number nor geographic distri-
bution of presences connected to a single application. Each
application contains a single script defining its behavior
and controlling its presences. The application connects to a
world (or worlds) to gain a physical representation, or pres-
ence. Multi-presencing means that each application directly
controls multiple presences.

Figures 4(a) and 4(b) show single- and multi-presenced
versions of the chess application, respectively. Instead of
an individual script per piece, a single chess script drives
the entire application, creating and controlling presences
for each piece and the board. All the messaging internal to
the application, i.e., between presences it creates, become
function calls within the same script, greatly simplifying the
code. Players are still separate – they are avatars and are
not scripted as part of the game – so not all messaging and
distribution-related challenges are removed.

4.1 Multi-presencing Details
Multi-presencing introduces one additional global function:

system.createPresence(space, cb, ...)

createPresence requests a new presence in space, and
invokes cb with the new presence, or null for failure, upon
completion. Additional parameters set initial values for
properties of the presence, such as position or mesh.

Compared to other systems, methods which take an ac-
tion in the world require an additional parameter: the pres-
ence object created by createPresence to operate on. Un-
like in other systems, all operations involving the space –
setting physical properties like position and mesh, querying
for other objects, messaging, etc. – are not global and must
operate on a presence object. Additionally, presence objects
can be destroyed explicitly: instead of coupling the lifetime
of the presence and application, destroying a presence only
removes that physical representation from the world and the
script continues.

4.2 Self
Although multi-presencing greatly simplifies code using
multiple virtual objects, it seems to have a drawback: a script
using only one presence still must track this presence and
explicitly specify it in all operations. To a novice this is an
additional barrier to entry, one more thing they must under-
stand to write even a simple script.

Even with multi-presencing, in most code there is usu-
ally a default presence to operate on. For example, when a
presence receives a message, the response should almost al-
ways be sent from the same presence. Timers are frequently
set in response to an event, and that event is usually associ-
ated with some presence. Actions taken in the timer callback
will usually use the presence associated with the event that
triggered the timer registration.

To avoid unnecessary verbosity and keep simple scripts
truly simple, the Emerson runtime tracks the default pres-
ence for each event and provides it to the script via the global
name self. self allows the user to easily access the current
presence and, in some cases, such as sending messages, elide
the presence part of the statement.

self is sometimes undefined. For example, when initial-
ized, a script has no presences so it cannot have a default.
Besides initialization, there are two types of events. Call-
backs generated by events from the space (e.g., messages,
proximity events) set self to the presence associated with



the event (e.g., message recipient, presence receiving prox-
imity event). Callbacks generated by runtime requests, such
as timers, inherit self from the callback that triggered the
request.

self was intentionally named to evoke self-referencing
pointers and references in object-oriented languages: whereas
in languages such as Ruby and Smalltalk, self refers to the
current software object, in Emerson it refers to the “current”
presence. JavaScript’s this keyword retains its traditional
semantics in Emerson. In our limited experience thus far,
self’s naming has not caused confusion, and self itself
has been fully-adopted by our users.

4.3 Limitations
Multi-presencing enables application developers to write
code that would necessarily be distributed in other systems
as simple, single-threaded code. However, multi-presencing
is not always applicable. The following are some application
characteristics that are incompatible with multi-presencing.

Multiple Domains of Trust Applications may require co-
ordination between presences controlled by different users.
While most presences in the chess game can be unified under
a single presence, players are independent avatars with sepa-
rate scripts. The next section explains how Emerson simpli-
fies this type of interaction.

Scalability Some applications will require more resources
(memory, CPU, bandwidth) than a single host can provide.
For example, a bank providing thousands of ATMs likely
cannot run on a single host.

Fault Tolerance If an application must maintain high avail-
ability, a centralized multi-presenced application is not an
appropriate solution. These applications might still take ad-
vantage of multi-presencing, but cannot rely on a single
multi-presenced application to provide their service.

We believe that the vast majority of applications do not
fall into these categories. Aside from user interaction, most
applications exist under a single domain of trust. Most ap-
plications aim to exploit the benefits of locality that a virtual
space provides, so scalability is usually achieved by inde-
pendent instances if necessary. And most applications are
not mission critical: a short period without service is simply
an annoyance, rather than a catastrophe.

Application developers cannot be fully protected from
distributed programming. At a minimum, any useful script
will need to interact with some other objects, such as avatars.
However, Emerson reduces exposure to distributed program-
ming by allowing as much code as possible to be written as
a single script with shared state and where all operations are
synchronous.

5. Sandboxing
Multi-presencing makes scripting interactions between pres-
ences connected to the same application easier. However, it

does not address the challenges of scripting interactions be-
tween presences on different applications. Such interactions
are common in a virtual world. For instance, Second Life has
a multi-million USD in-world economy [9]. As part of that
economy, avatars can interact with objects in the world by
transferring “Linden Dollars” to them to buy and sell virtual
goods.

In the chess example, the chess application sends the
player code to run locally. There is a tradeoff in support-
ing this interaction. Allowing the chess application to exe-
cute code within the avatar simplifies the application. First,
it avoids the requirement of protocol agreement by allow-
ing the chess application to specify how to translate mouse
events into messages it can decode. Second, it avoids mes-
sage reordering because mouse events are guaranteed to be
processed in order on the player’s host and moves can be
requested over a single, ordered stream.

However, executing this untrusted code locally aggra-
vates the trust challenge and requires the avatar to under-
stand the details of sandboxes to ensure security. This trade-
off motivates the general principle behind the design of
Emerson sandboxes: Emerson’s sandboxes eschew compli-
cated, edge-case functionality to make sandboxes as safe
and usable as possible for novice scripters.

5.1 Sandbox Interface
All code in an Emerson application is executed within a
sandbox that provides data isolation: each sandbox has its
own environment and cannot directly access data in other
sandboxes. Each application starts with a single root sand-
box with full capabilities. Except for the root sandbox, each
sandbox has a single parent and can have arbitrarily many
child sandboxes.

Figure 5 shows a more complicated example than chess,
which requires a tree of sandboxes. The root sandbox for an
avatar has initialized multiple child sandboxes for different
applications it has encountered. One is for a marketplace ser-
vice, which finds nearby vendors using a proximity query on
the avatar’s presence. When the avatar approaches a vendor,
the marketplace sandbox creates its own child sandbox to ex-
ecute code from the vendor, allowing it to open a display for
purchasing items. This results in the tree structure shown in
the figure and safely isolates code originating from different
applications.

It is easy for a scripter to create a sandbox and execute
code within it. Returning to the chess example:

var caps = new Capabilities(Messaging, Gui); (A)

var newSandbox =

system.createSandbox(avatar, chessboard, caps); (B)

newSandbox.execute(chessCode); (C)

Line B shows the creation of the sandbox. The first two
parameters associate the sandbox with one presence owned
by this application (avatar) and one other presence in the
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Figure 5. Each application has a tree of sandboxes, and
each sandbox can only communicate directly with its parent
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space, e.g., the chessboard’s presence that sent the request
for the sandbox (chessboard).

Each sandbox is created with a presence because all inter-
actions with the world require a presence: a sandbox which
can have no external effects would be useless. However, the
sandbox is not restricted to this single presence: given the
right capability, described below, the sandbox may create
more presences.

The second parameter, another presence in the space, pro-
vides the origin of the sandbox. This allows the script to
provide blame for a poorly behaving sandbox. But more im-
portantly, as sandboxes are frequently used to filter events
and relay information back to the creator, storing this owner
presence allows the system to provide a shorthand for report-
ing messages back to the owner:

system.sendHome(moveMsg);

which sends moveMsg to chessboard from player.

5.1.1 Capabilities
Each sandbox has a set of capabilities, allowing the creator
to restrict what actions it takes in the world (lines A and B
above). Capabilities both restrict actions that can be taken
on presences, such as registering queries, sending messages,
and moving the presence, as well as other system actions,
such as creating new presences, creating child sandboxes,
and presenting a GUI to the user. All capabilities are off
by default: although this requires explicit agreement by the
scripter (or indirectly via the user interface, the user), it is
worth the improved security. An error in specifying capabil-
ities means a script failure rather than the ability to take over
an application.

Capabilities are specified when the sandbox is created.
After this point, they are immutable. We could only envi-
sion a narrow range of uses where mutability was strictly
required, and felt that handling dynamic capabilities would
be too challenging for novices. With dynamic capabilities,
sandboxed code is difficult to write because its abilities may
change at any moment. Additionally, the sandbox host may
forget to revoke capabilities after enabling them temporarily.

Children sandboxes have a subset of the capabilities of
their parents: code cannot increase its capabilities by creat-
ing additional sandboxes and executing from within them.

5.1.2 Sandbox Messaging
Emerson sandboxes are isolated so they cannot directly in-
teract via function calls. Instead, Emerson allows child and
parent sandboxes to exchange messages. This feature allows
scripters to use messaging to extend the interface between
sandboxes beyond their built-in capabilities.

A sandbox cannot send a message directly to any sandbox
that is not its parent or its child. For instance, a sandbox
cannot send directly to a grandparent, sibling, grandchild,
or cousin, and instead must rely on parents and children
to forward the message on. This design ensures linear data
flow: for any two sandboxes to interact, there is only one
shortest path that messages can take between them. This
makes sandbox messaging easier to reason about and makes
it easy for scripters to filter messages that might lead to
security vulnerabilities.

Messages are not shared state: the receiver is passed a
copy of the original. We experimented with other techniques
but concluded they were too challenging for novices. For in-
stance, we initially allowed parents to pass additional ob-
ject references (not copies) to the child as parameters to
createSandbox. We discarded this approach for two rea-
sons. First, scripters had trouble keeping track of everything
a single variable referred to, and therefore the collection of
items being exposed to the child sandbox. For example, an
object might, by chance, have a reference back to a parent’s
system object, allowing the child sandbox to access nearly
all state available to the parent. Second, this encouraged un-
safe laziness, such as passing the entire system object to
child sandboxes.

5.1.3 Sandbox Control
Sandboxes run untrusted code, so they cannot always be
expected to behave well. In these cases, parent sandboxes
can forcefully control the execution of children with three
methods: suspend, resume, and clear. clear destroys
the sandbox and may be used for instance if the sandbox
uses excessive CPU, memory, or is no longer necessary.
Once cleared, code within a sandbox cannot be resumed,
and all the objects within it are marked for garbage col-
lection. Although this decision may be revisited in the fu-
ture, to provide sandbox scripters some guarantees about
message ordering, sandbox execution prevents execution of
other sandboxes. To avoid denial-of-service attacks, such as
code within a sandbox executing an infinite loop, system-
enforced resource limits automatically clear sandboxes that
have continuously executed too long.

The suspend and resume methods allow temporarily
pausing execution of the sandbox. Suspend and resume are
useful for code associated with activities that are transient
but repeated, and for which maintaining state is useful. For



example, a player in a game may run a sandbox which
enables participation in the game and which also maintains
statistics about its participation. The sandbox should only
be enabled during play but should not be cleared because it
stores valuable state.

All events from presences, such as messages and proxim-
ity updates, are dropped while suspended. Other events, such
as timers, are deferred until resume is called. The Emer-
son runtime synthesizes additional events for updates where
dropped messages lead to inconsistent or impossible states,
for example the streaming updates provided for proximity
queries.

5.2 Sandbox Authentication
An implication of our sandboxing approach is that applica-
tions cannot rely solely on the sender of a message to authen-
ticate sensitive transactions. For example, consider a bank
application that uses only the presence identifier of a mes-
sage for sender authentication. Avatar A executes code from
both the bank and code from another application – a chess
game – in separate sandboxes, both of which have been given
the capability to send and receive messages from Avatar A.
Although the bank trusts the avatar itself, it does not trust
any other sandboxed code running on A. If the bank receives
a message from A to transfer money to another avatar in the
world, the bank cannot be sure if this message was truly ini-
tiated by its sandbox executing on A or whether the chess
application’s sandbox deceptively constructed a transfer re-
quest message from its sandbox on A: both messages would
have the same sender identifier. Similarly, with the ability
to receive messages, the chess sandbox can snoop on traf-
fic intended for A, so bootstrapping secure communication
with simple in-band approaches such as a secret token is not
possible. Thus, sandboxes as described make it difficult to
ensure secure communication.

Web applications are a familiar example of a system
which faces similar challenges. Like in Emerson’s sand-
boxes, JavaScript code can send messages on behalf of the
user. To reduce the risks this ability creates, browsers in-
stitute a same-origin policy: although any sandboxed script
can make a request, it cannot read a reply unless its origin
matches the protocol, domain, and port for the site being
messaged.

We believe the same-origin policy is too restrictive for
virtual worlds, and emerging web standards indicate it is too
restrictive for Web applications as well [39]. For instance,
a banking application in which an avatar can interact with
many ATM presences controlled by the application would
require a separate sandbox per ATM under this policy: a
sandbox for an ATM could only communicate with that
ATM.

To address the message authentication problem in Emer-
son, we are considering modifying the messaging rules de-
scribed in Section 5.1.2 to include SMessages. SMessages
add source and destination sandbox fields to regular mes-

var caps = new Capabilities(Messaging);

var chessSbox = system.createSandbox(caps,pres1,chess);

var bankSbox = system.createSandbox(caps,pres1,bank);

var otherSbox = system.createSandbox(caps,pres2,other);

chessSbox.execute(chessCode);

bankSbox.execute(bankCode);

otherSbox.execute(otherCode);

(a) Sandbox creation code

Root Sandbox

pres2pres1

chessSbox bankSbox otherSbox

  Chess
Sandbox

   Bank
Sandbox

  Other
Sandbox

(b) Application state

Figure 6. Without SMessages, code within the bank sand-
box and chess sandbox can read any message sent to the ap-
plication’s first presence.

sages. Emerson would restrict delivery to the specified des-
tination sandbox, much like TCP and UDP ports restrict the
receiver of packets. SMessages provide the sender finer con-
trol over the destination of messages and address the prob-
lem of snooping sandboxes. In the bank example, messages
from the bank can always be sent to the avatar’s root sand-
box, ensuring only the original, trusted script interacts with
the bank during sandbox creation. Similarly, messages sent
to the bank can be verified as coming from the avatar’s root
sandbox.

Root sandboxes always have a sandbox identifier of zero
so that the original script can easily be addressed. Although
scripters can explicitly set a bit to deliver to all sandboxes
with the capability of receiving messages on a presence,
without a specified sandbox, SMessages deliver solely to the
root sandbox.

As a concrete example of how SMessages may work,
consider Figures 6(a) and 6(b). Because chessSbox and
bankSbox both have their capabilities set so that they can lis-
ten for messages on pres1, without SMessages any message
sent to pres1 can be read by the code executing in the chess
sandbox and the bank sandbox. With SMessages, a sender
can specify that his/her message should only be read by a
particular target sandbox, for instance, the root sandbox or
bank sandbox, and avoid eavesdroppers.

We believe that SMessages are both secure and flexible.
Unlike an approach that would adopt a same-origin pol-
icy similar to browsers’, using SMessages, sandboxed code
(given the capability) can still message any other presence
in the world. The remaining challenge lies in making this
mechanism as accessible to scripters as possible. Building
systems and abstractions that allow applications that make
it painless to send to appropriate destination sandboxes and
that discourage common security bugs will be absolutely es-
sential. The prevalence and severity similar bugs in related



systems, such as cross-site request forgery vulnerabilities in
many Web applications, suggests how important and diffi-
cult it may be to make in-world security usable for novice
scripters.

6. Emerson Details
The discussion to this point has focused on the high-level se-
mantics of Emerson. This section provides additional details
to give the flavor of developing a complete Emerson appli-
cation. For brevity and diversity, we depart from the chess
example and examine an indexer application. The indexer is
multi-presenced and catalogs some basic information – iden-
tifier and position – for presences in the world. It uses timers
to make its presences wander through the world, proximity
queries to find other presences, and messaging to introduce
itself to them. When one of the indexer’s presences receives
an introduction reply, it catalogs the sender’s address and
position in the world for later use.

6.1 Programming Model
Emerson is a dialect of JavaScript. Although we add some
simplifying syntax, it mostly preserves JavaScript’s syn-
tax and semantics. JavaScript’s prototypical inheritance and
very dynamic object system fit the application well, but we
also chose JavaScript for a more pragmatic reason: we ex-
pect more novices to have encountered JavaScript through
simple Web programming than other languages. Emerson
users with some familiarity of JavaScript should be able to
quickly enter the world and create scripts. We can also lever-
age existing tools and tutorials to get new developers started.

JavaScript also trivially supports interactive development.
Many existing worlds such as Second Life and Unreal [36]
require scripters to “reboot” objects to reflect changes in
their associated scripts. We believe this makes experimen-
tation and debugging more difficult for novice users and in-
creases the cost of each iteration of development. We be-
lieve a better model is one in which users customize virtual
world objects in an interactive process, for instance adding
a wagTail method to a virtual dog so that it appears ex-
cited when petted. JavaScript naturally supports this behav-
ior without requiring off-putting recompilation steps.

Emerson scripts are single-threaded and event-driven.
Examples of events in Emerson are timer expiration, a pres-
ence’s connection to and disconnection from the world, and
message reception. Users can provide callbacks to Emerson,
which execute when each of these events are triggered. We
chose to avoid multi-threading because it introduces chal-
lenging concurrency problems such as serialization, races,
and deadlocks, all of which are too difficult for novices to
deal with. Because Emerson’s target audience is novices
writing relatively simple scripts, we believe this is the right
tradeoff.

6.2 Events
An Emerson script is driven by a simple event loop. This
section discusses the subset of events that the Emerson pro-
gramming system exposes relevant to the simple indexer ex-
ample.

6.2.1 Timeout events
Timeout events are the simplest events in Emerson. A
scripter registers for a timeout event through a call to the
system.timeout function:

system.timeout(3.5, userCallback);

This triggers the userCallback function with no arguments
after 3.5 seconds.

6.2.2 Proximity events
Applications discover other applications’ presences by reg-
istering geometric proximity queries:

self.setProxQuery(.5, userProxAddedCallback,

userProxRemovedCallback);

Such queries are standing: they remain registered until ex-
plicitly canceled and after returning an initial set of results
they continue to stream updates as presences enter or exit
the result set. The system manages a proximity result set
for each presence. Each presence entering or exiting a pres-
ence’s result set generates a proximity event on the querying
application. If specified in the setProxQuery call, callbacks
will be invoked when this set changes. Emerson wraps the
properties provided by the system, such as address, position,
and mesh, into an argument to the callback, called a Visible.
When a presence is removed from the set its corresponding
Visible is marked as invalid. The first parameter adjusts the
proximity query’s range.

6.2.3 Message Events
Writing distributed applications is conceptually difficult
for the reasons mentioned in Section 3.2. Although multi-
presencing and sandboxing reduce the amount of distributed
programming, they do not remove the problem entirely, and
presences must still communicate over the network. In the
indexer example, for instance, the indexer’s presences must
send introduction messages to presences on other applica-
tions that it encounters.

At its most basic level, Emerson provides a sendMessage
function that allows scripters to send messages to presences
in the world. Emerson messages are simply objects that are
automatically serialized. Section 5.1.2 described extensions
to this basic message sending structure, which would make
sandboxes within an application addressable. This section
describes Emerson-specific syntax that emphasizes the use
of simple stop-and-wait protocols to constrain complexity.

During development, we observed that rather than simply
sending one-off messages, many applications used request-
reply patterns, assigning resources or preparing behavior



in anticipation responses to messages they sent. The In-
troduction Protocol mentioned in Section refsec:probState-
beginGame is an example of such behavior: the sender of
the introduction message listens for a response from the re-
ceiver.

Emerson provides special “angle-angle” syntax to accom-
modate this design pattern. To send a message, introductionMsgObj,
from presToSendFrom to some presence in the world,
somePresence, a scripter writes

presToSendFrom # introductionMsgObj >>

somePresence >>

[onRespFunc,timeToWait,onNoRespFunc];

The message object sent is automatically tagged with a
stream identifier and sequence number. When presToSendFrom
receives a reply to introductionMsgObj (from somePresence,
with the same stream identifier, and with an incremented se-
quence number), the reply message is dispatched to onRespFunc.
If no reply is received after timeToWait seconds, the Emer-
son system executes onNoRespFunc, and subsequent mes-
sages will not be passed to onRespFunc.

To simplify creating replies to messages, the runtime of
the receiver writes a makeReply function into each received
message. Calling makeReply with an object as its argument
constructs an object with the sender, receiver, sequence num-
ber, and stream identifier correctly specified for a reply.

For instance, if a scripter wants to echo all replies to
introductionMsgObj back to the responder, the scripter’s
onRespFunc would be written as follows:

function onRespFunc(replyMsg,replier)

{

replyMsg.makeReply(replyMsg) >> [];

}

The angle-angle message sending syntax encourages ap-
plications to interact with other applications through basic
stop-and-wait protocols. Although this approach may reduce
throughput between message senders, it constrains complex-
ity: there is a unique of messages, reducing the number of
states a script must recover from on error.

The Emerson system also provides special syntax for
receiving messages. To listen for introduction messages, an
indexer’s presences register as follows:

introMsgHandler << introMsgPattern

where introMsgPattern is a special pattern object, which
filters incoming messages, or an array of pattern objects.
Patterns have the form:

{ field[.subfield]: [value] : [prototype] }

which filter individual fields of the message, checking for
existence, their value, and their prototype object. Fields in
square brackets are optional, so a scripter can, for exam-
ple, only check the existence, but not value, of a field. As
a slightly more complete example, the statement below dis-
patches the function introReqCB on receiving an introduc-

tion request message (a message with field msg that has
value introRequest):

introReqCB << {"msg":"introRequest"};

function introReqCB (msg, sender) {

system.print("Intro received.");

}

6.3 Putting it together
Figure 7 shows how to compose the simple events described
in Section 6.2 to create a full indexer application. The code
in the figure assumes a single user-specified array containing
basic presence initialization information. Based on this ar-
ray, the script creates several new presences (line A). When
each presence connects to the world, it issues a proximity
query (line B). When one of indexer’s presences discovers
an in-world presence through its proximity query, it sends
an introduction request message to the discovered presence
and sets a handler that dispatches to introRepCallback on
replies (line C). Finally, upon receiving an introduction reply
message, indexer catalogs the in-world presence that sent it
(line D).

7. Related Work
The majority of research in scripting languages for worlds
is geared towards games or small virtual worlds that are
centrally controlled, execute on a single node, and usually
developed by professionals. In this section we focus mainly
on systems designed for novice programmers and which ease
distributed systems programming.

7.1 Programming for Novices
Kelleher and Pausch [15] survey and taxonomize program-
ming languages targeted at novice users. The first level of
categorization is between Teaching Systems, which aim to
teach programming for its own sake, and Empowering Sys-
tems, which aim to make programming accessible in service
of other goals, such as entertainment or education in other
domains. Emerson falls squarely in the second category: an
Emerson user’s goal is to build an interesting new experi-
ence, not to learn how to program.

Despite their different motivations, teaching systems pro-
vide valuable lessons. For example, Emerson is inspired by
LOGO’s [24] emphasis on accessible power and interactive
development and debugging: Emerson scripts can be writ-
ten in-world and built on dynamically to modify and de-
bug behavior in real time. Emerson is based on JavaScript,
which is itself heavily influenced by Self [38]. Self aims for
conceptual economy and the programming model fits very
well with metaverse-style virtual worlds: there are only ob-
jects (no classes, prototype-based), no distinction between
properties and methods, and minimal built-in control struc-
tures. Prototype-based object-oriented models have previ-
ously been used successfully in context of games and vir-



var dictionary = {};

//Creates new presences, resulting in one invocation

//of onConnection for each

for (var i = 0; i < initData.length; ++i) {

system.createPresence(initData[i].worldID,

onConnection,

initData[i].pos,

initData[i].mesh); (A)

}

// When onConnection executes, self is now connected

// to world.

function onConnection() {

// register a callback for proximity add events

// no action is taken for proximity remove events

self.setProxQuery (.5, proxAddCallback, null); (B)

system.timeout(10, updatePosition);

}

// new_pres contains the address and position

// of a presence in the world that satisfies

// self’s proximity query.

function proxAddCallback(new_pres) {

// create and send the actual introduction message

var intro = {"msg":"introRequest"};

intro >> new_pres >> [introRepCallback]; (C)

}

// msg contains message object received from sender.

function introRepCallback(msg, sender) {

var info = {"name": sender.address,

"pos": sender.position,

"meta": msg.metadata};

dictionary[sender.address] = info; (D)

}

// Moves self and schedules another movement

function updatePosition() {

self.position = self.position + <50,0,0>;

system.timeout(10, updatePosition);

}

Figure 7. A simple indexer that collects names and posi-
tions for nearby presences.

tual worlds [10, 14], including the text-based predecessors
of today’s virtual worlds, called MOOs [7].

Alice is a programming environment designed “to engi-
neer authoring systems for interactive 3D graphics that will
allow a broader audience of end-users to create 3D interac-
tive content without specialized 3D graphics training” [6],
a goal closely related to Emerson’s. While many lessons
learned in Alice are applicable to Emerson, such as the use
of egocentric coordinate systems and intuitive units such
as turns/second rather than radians/second, it is targeted at
small, local applications and therefore does not address the
challenges of scripting for a large scale distributed world.

The Alternate Reality Kit [34], designed in Smalltalk [12],
is a system for creating interactive animated simulations. It
notes the importance of both “literalism”, adhering strongly

to a real world metaphor, and “magic,” where certain fea-
tures break that metaphor in favor of simplicity. Although
not magic in the user interface sense, Emerson similarly
breaks the physical metaphor for simplicity: many presences
can be driven by a single script and behavior “owned” by one
application is permitted to run on another in a sandbox.

Scratch [25] is a media-rich programming environment
designed to increase technological fluency. During early de-
velopment of Scratch, researchers realized that multi-object
interaction made it difficult to share, exchange, and build
upon objects because object scripts were not self-contained.
They disabled object interaction and hoped to create more
loosely coupled object interaction. Emerson partially ad-
dresses this problem through multi-presencing, which allows
all code that must be executed together to be contained in a
single script. The introduction protocol corresponds to the
loosely-coupling and dynamic interaction they aimed for.

Finally, Brandt et al. [3] note that even much professional
development is “opportunistic,” emphasizing speed and ease
of development. They hope to build tools which better em-
phasize this style. While Emerson has focused on a lan-
guage features which ease development, improving tools and
the programming environment are important areas of future
work.

7.2 Implementation
Much research has attempted to address the challenges of
distributed programming [16, 18, 40]. However, we recog-
nize that distributed programming is still challenging even
for expert developers. Therefore, Emerson tries to minimize
the amount of distributed programming performed by us-
ing multi-presencing and enabling remote code execution in
sandboxes to convert previously parallel code into simple,
single-threaded code.

As mentioned earlier, Emerson’s multi-presencing model
is similar to vats in E. Each object in an E vat is separately
addressable from external vats and objects within a vat can
cooperate directly amongst themselves. Emerson builds on
this basic abstraction, automatically managing relevant pres-
ence with self.

In addition to multi-presencing, Emerson reduces dis-
tributed programming is by allowing execution of code from
other applications. Emerson accomplishes this by sandbox-
ing, a technique also available in other languages, such as
Lua [19]. However, in many cases sandboxes are short-lived:
Lua sandboxes only exist for the lifetime of a function call.
Further, Emerson aims for simplicity by requiring that ca-
pabilities for sandboxes are specified up front and are static,
whereas many other sandboxes allow dynamic changes to
capabilities.

Sandboxing has also been used in the context of virtual
worlds. One example is llRemoteLoadScriptPin [28]
in Second Life, which allows different applications to ex-
change scripts. However, this mechanism is extremely lim-
ited, essentially requiring a pre-existing relationship be-



tween the source and host of the sandbox. Further, Sec-
ond Life has an unusual model where multiple, independent
scripts can execute on the same object. The existing script
is not aware of the new one, and vice versa, so there can be
no interaction between them. Finally, once accepted, these
scripts receive complete control over the object: there are no
capabilities or permissions on sandboxes. This is commonly
used to upgrade scripts to new versions, but much less com-
monly for dynamically exchanging scripts between objects
with different owners.

Alternatives to sandboxing include language-based infor-
mation flow [5, 26] and dynamic taint analysis [22], which
can enforce data flow policies to ensure sensitive data does
not escape an application or is not accessed by untrusted
code. Sandboxing may seem heavy-handed compared to
these alternatives, but it is simpler to understand and use,
a more important property for Emerson.

Object capabilities have been applied in the context
of virtual worlds to provide fine-grained, flexible permis-
sions [27]. Similar ideas could be applied in Emerson to
control access to services via messaging. For example, in the
chess game a message to perform a move might require a ca-
pability token, generated securely by the Emerson runtime.
This might be an intuitive way to encourage good security
for novice application developers.

Where Emerson is unable to remove distributed program-
ming, it builds on existing models and languages. Appli-
cations are essentially actors [1], independent threads of
execution which communicate via asynchronous messag-
ing. Emerson’s event matching is similar in spirit to Ac-
torSpaces [2], but the latter focuses on filtering applications
whereas Emerson focuses on filtering events. Erlang [40]
processes use a similar pattern matching strategy to handle
messages received from other processes. Erlang supports se-
lective receive, but suffers from large receive pattern match-
ing blocks.

8. Conclusion
This paper describes Emerson, a programming system for
user-extensible virtual worlds targeting novice users. In par-
ticular, metaverses, in which any user can script objects,
present a challenging scripting environment: they must be
distributed to scale to millions of users and common interac-
tions involve two mutually untrusting applications.

Emerson simplifies programming for this environment in
two key ways. First, unlike most systems which tie each
script to a single presence in the world, Emerson supports
multi-presencing. By controlling multiple presences from a
single script, code which is distributed becomes local and
single-threaded. This avoids many challenges in writing dis-
tributed programs including inconsistent state, message loss,
and message reordering. Second, Emerson enables local ex-
ecution of untrusted code in sandboxes. This approach re-
duces the amount and complexity of messaging in an appli-

cation by allowing some processing to occur on the “client”
of the application. It also addresses the challenge of protocol
agreement because it enables bootstrapping of new interac-
tions with a minimal introduction protocol.

However, these abstractions only provide a starting point:
the Emerson programming system is an active research
project, and still undergoing active development. A small
team of undergraduates with varying programming back-
grounds have begun developing applications in Emerson and
their experiences have informed and will continue to inform
development.

The most immediate area for future work on Emerson is
on the language itself. Simple extensions such as cleaner
syntax for mathematical operations and a more powerful,
intuitive interface for movement are oft-requested features.
Additionally, the introduction protocol described in Sec-
tion 3.1 is particularly useful for avatar-based interactions
where an end-user can make decisions about what sand-
boxed code to run and with what capabilities. Encouraging
interaction between non-avatar applications may require a
simplified mechanism for registering basic services and cate-
gorizing other presences in the world by which services they
provide, and we are considering incorporating ideas from
AmbientTalk’s service discovery protocol to this end [8]. Fi-
nally, we are examining ideas from event specification lan-
guages to allow scripters to declaratively compose and spec-
ify events that lead to callbacks.

We recognize that for complicated applications, it may
become difficult to maintain code with so many callbacks.
Solutions that obscure callbacks, for instance that provide
special wrappers or syntax so that code deferred to be exe-
cuted on an event appears as straight-line code can reduce
code re-use. Although we will examine these schemes going
forward, our principle approach to address this maintenance
problem will be to build libraries that automate many com-
mon sources of callbacks. The request-reply message syntax
described in Section 6.2.3 is a good example of our early
efforts in this domain.

Additional challenges are emerging in protocol develop-
ment. The introduction protocol, described in Section 3.1 is
primarily designed for interaction involving a human avatar.
Enabling intelligent interaction between an arbitrary pair of
scripted objects will likely require a narrow set of additional
well-known protocols.

Finally, in addition to such new features, additional work
remains on improving those already discussed. For instance,
although this paper has discussed sandboxes strictly from
the perspective of trust, the data isolation they provide may
also be useful for code organization and trusted collaborative
coding.
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