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ABSTRACT
An experiment is described comparing three devices (a
mouse, a trackball, and a stylus with tablet) in the
performance of pointing and dragging tasks. During
pointing, movement times were shorter and error rates were
lower than during dragging. It is shown that Fitts’ law can
model both tasks, and that within devices the index of
performance is higher when pointing than when dragging.
Device differences also appeared. The stylus displayed a
higher rate of information pmeessing than the mouse during
pointing but not during dragging. The trackball ranked
third for both tasks,

KEYWORDS: Input devices, input tasks, performance
modeling.

INTRODUCTION
The actions of pointing and dragging are fundamental, low-
level operations in direct manipulation interfaces. While
pointing tasks have been studied extensively (see, for
example, the surveys by Milner, 1988 and Greenstein &
Arnaut, 1988), the same is not true for dragging, The
present study addresses this imbalance. It is driven by a
belief that the human factors of the full range of direct
manipulation tasks must be better understood, With such
understanding emerges the ability to develop better
predictive and analytic models, for example by extending
the Keystroke-Level Model of Card, Moran$ and Newell
(1980) to handle this mode of interaction.
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This paper has two main contributions. First, it shows
that dragging is a variation of pointing, and consequently,
that Fitts’ law can be applied to it. Second, it establishes
that the performance of input devices in each of these two
tasks should be considered in characterizing the human-
factors of devices.

We present an experiment comparing three devices (a
mouse, a tablet, and a trackball) in both a pointing and a
dragging task. Each is modelled after Fitts’ reciprocal
tapping task (Fitts, 1954).

FITTS’ LAW: AN OVERVIEW

Pointing (target acquisition) tasks have been studied
extensively. Much of this work is based on a robust model
of human movement known as Firrs’ law (Fitts, 1954),
The law predicts that the time to acquire a target is
logarithmically related to the distance over the target size,
More formally, the time (Ml’) to move to a target of width
W which lies at distance (or amplitude) A is

MT= a i- b log2(2A I W) (1)

where a and b are empirical constants determined through
linear regression. A variation proposed by Welford (1968)
is also widely used

MT= a + b log2(A I W + 0.5). (2)

The log term is called the index of difficulty (ID) and carries
the units “bits” (because the base is “2”). The reciprocal of
b is the index of performance (ZP) in bits/s. This is
purportedly the human rate of information processing for
the movement task under investigation. Card, English, and
Burr (1978) found 1P = 10.4 bits/s for the mouse in a text
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selection task, This is similar to values obtained by Fitts
(1954) but is higher than usual. For example, ten devices
were tested in studies by Epps (1986), Jagacinski and Monk
(1985), and Kantowitz and Elvers (1988). Performance
indices ranged from 1.1 to 5.0 bits/s.

There is recent evidence that the following formulation is
more theoretically sound and yields a better fit with
empirical data (MacKenzie, 1989):

MT=a+b log2(A/W+ l). (3)

In an analysis of data from Fitts’ (1954) experiments,
Equation 3 was shown to yield higher correlations than
those obtained using the Fitts or Welford formulation.
Another benefit of Equation 3 is that the index of difficulty
cannot be negative, unlike the log term in Equation 1 or 2.
Studies by Card et al. (1978), Gillan, Holden, Adam,
Rudisill, and Magee (1990), and Ware and Mikaelian
(1987), for example, yielded a negative index of difficulty
under some conditions. Typically this results when wide,
short targets (viz., words) are approached from above or
below at close range. Under such conditions, A is small,
W is large, and the index of difficulty, computed using
Equation 1 or 2, is often negative. A negative index is
theoretically unsound and diminishes some of the potential
benefits of the model.

Fitts’ original experiments used reciprocal tapping tasks
where one alternately tapped on two rectangular targets.
The controlled variables were target width and the distance
between targets; however, the motion was one dimensional
(back and forth). Extending the model to two dimensions
(which better fits pointing tasks in computer usage) has
been discussed by Card et al. (1978) and Jagacinski and
Monk (1985), among others.

DRAGGING
There is little in the literature addressing human
performance in dragging tasks. One exception is the study
by Gillan et al. (1990). Like them, we extend Fitts’ law to
dragging. However, their study cleats with text selection
and is confounded on issues such as approach angle, Our
work is at a lower level, and pays closer attention to device
perfommnce in the respective tasks and to the formulation
of the mathematical model.

Using Fitts’ law to model dragging is best explained using
an example. Consider the case of deleting a file on the

Apple Macintosh. First, the user acquires the icon for the
file in question. This point/select operation is a classic
two-dimensional target acquisition task. Then, while
holding the mouse button down, the icon is dragged to the
trashcan. This also is a target acquisition task. One is
really just acquiring the trashcan icon. In this case,
however, the task is performed with the mouse button
depressed

From the perspective of motor performance, the only
difference is whether the tasks are perfotmed with the mouse

button released or held down. (In both cases, the target is
an icon of approximately the same size.) These classes of
action are characterized as State 1 and State 2 by Buxton
(1990), as illustrated in Figure 1.
State 2 motion on most input devices requires active
maintenance of the state (e.g., by holding down a button),

generally restricting the freedom of movement. 1 Given the
frequency of State 2 actions in direct manipulation systems,
we feel the following are important

. to evaluate devices in both State 1 and State 2 tasks
(unlike prior emphasis on the former), and

“ to show that an established model (i.e., Fitts’ law) can
apply to this additional, State 2, case.

Achieving these two goals was our main motivation.
Mean movement time, error rate, and Fitts’ law were used
to compare performance on three input devices in both State
1 and State 2 tasks.

Button Up

Tracking Dragging

Figure 1. Simple 2-State Interaction
In State 1, mouse motion moves the tracking symbol.
Pressing and releasing the mouse button over an icon
selects the icon and leaves the user in State 1.
Depressing the mouse button over an icon and moving
the mouse drags the icon. This is a State 2 action.
Releasing the mouse button returns to the tracking
state, State 1 @om Buxton, 1990).

METHOD

Subjects
Twelve computer literate subjects (11 male, 1 female) from
a local college served as paid volunteers. Subjects used

their preferred hand.

Equipment
Tasks were performed on an Apple Macintosh II using three
input devices:

● Macintosh mouse
● Wacom tablet and stylus

1 While maintenance of State 2 may exacerbate movemen~ the
continued proprioceptive feedback can prevent mode errors (see

Sellen, Kurtenbach, & Buxton, 1990).
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. Kensington trackball

Procedure
Pointing Task: Two targets appemed on each side of the
screen (see Figure 2) with an arrow indicating where to
begin. Subjects proceeded to point and click alternately
between the two targets as quickly and accurately as
possible, ten times in a row. A beep was heard if selection
occurred outside the target. On each click a box at the top
of the screen turned black while in State 2. (This additional
feedback was important with the stylus to help judge the
amount of pressure needed.) Following a one second pause
the next condition appeared.

[

+

+

Figure 2. State 1 Pointing Task
Subjects started at the target marked by the arrow and
alternately selected the targets as quickly and accurately
as possible. The cross tracked the movement of the
input device.

-1
+

1Figure 3. State 2 Dragging Task
By placjng the crossover the object insiak the target,
the object could be acquired and dragged to the other
target. State 2 was maintained by holding the mouse
button down.

immediately in the centre of the target in which the old
object was just dropped.

The dragging task can be likened to an inside-out pointing
task During pointing, movement occurred with the mouse
button up and a down-up action terminated a move (and
initiated the next); during dragging, movement occurred
with the mouse button down and an up-down action
terminated a move (and initiated the next).

Although instructed to move as quickly and accurately as
possible, performance feedback was not provided. Subjects
were told that an error rate of one miss in every 25 trials
was optimal.

Design
Both tasks used four target amplitudes (A= 8, 16,32, or 64
units; 1 unit = 8 pixels) fully crossed with four target
widths (W = 1, 2, 4, or 8 units). Each A-W combination
initiated of a block often trials, each being one pointing or
dragging task. Sixteen randomized blocks constituted one
session. Five sessions were completed for each device for
each task,

The task and device factors were within-subjects — each
subject performed both pointing and dragging on all three
devices. Ordering of devices was counterbalanced. Within
devices, a random process determined the initial task
(dragging or pointing) and tasks alternated for each session
thereafter.

Prior to each new device-task condition, subjects were given
a practice block. Breaks were allowed between blocks and
sessions, but subjects completed all ten sessions on each
device in a single sitting. Three sittings over three days,
for a total of about three hours, were necessary to complete
alt conditions.

RESULTS

Adjustment of Data
Subjects were observed to occasionally “drop” the object
during the dragging task, not through normal motor
variability, but because of difficulty in sustaining State 2
motion. (This was particularly evident with the trackball.)
Thus “dropping errors” were distinguished from motor
variability errors. Examining the distribution of “hits” (the
X coordinates) confirmed this source of error. Figure 4
shows a sample distribution of responses around the target
for one subject during dragging. The data reveal deviate
responses at very short movement distances distinct from
the normal variability expected.

Dragging Task.’ The dragging task was similar except an
“object” (see Figure 3) was acquired by pressing and holding
down the button (on the mouse and trackball) or
maintaining pressure on the stylus to “drag” the object to
the other target. The object was dropped by releasing the
button or pressure. The new object to be selected appeared

163



A= 32 units
8

W= 2 units
H-1

(1unit=8 pixels)
~6 -
a)
3

El
.u

-60 -48 -36 -24 -12 0 12

XCoordinateAboutTargetCentre(pixels)

Figure 4. Dropping Errors

The distribution of X coordinates for one su.biect showirw deviate res~onses classified as “dropping errors”. Shown are 50
trials for the trac~ball during dra)ging with ~ = 32 and”W = 2.

Because dropping errors are considered a distinct behavior,
we adjusted the data by eliminating trials with an X
coordinate more than three standard deviations from the
mean. Means and standard deviations were calculated
separately for each subject, and for each combination of
width (W), amplitude (A), device, and task.

We also eliminated trials immediately following deviate
trials. The literature on response times for repetitive, self-
paced, serial tasks shows that deviate responses are
disruptive events and can cause unusually long response
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Mouse Tablet Trackball

Device

Figure 5. Mean Movement Time by Device and Task

. .

times on the following trial (e.g., Rabbitt, 1968).
A multiple comparisons test indicated a significant drop in

movement time after the first session (p < .05), but no
significant difference in movement time over the last four
sessions. Therefore, the first session for each subject for
each device-task condition was also removed. Henceforth,
“adjusted” results are those subject to the above
moditlcations.

Movement Time
Mean movement times for the mouse, tablet, and trackball
respectively were 674, 665, and 1101 ms during pointing
and 916, 802, and 1284 ms during dragging. There was a
significant main effect for task, with pointing faster than
dragging (F1.,11 = 72.4, p < .001). This is shown in

Figure 5. Devices also differed in movement time (F2,22 =

264.0, p < .001). The trackball was the slowest in both
pointing and dragging; however, there was a significant
task-by-device interaction (F2,22 = 4.76, p c .05). While
the mouse and tablet were comparable for pointing,
performance was more degraded for the mouse than for the
tablet or trackball when the task changed to dragging.
Adjusting for dropping errors had minimal effect on
movement time.

Errors
An error was defined as selecting outside the target while
pointing, or relinquishing the object outside the target
while dragging. Unadjusted error rates for pointing were in
the desired range of 4% with means of 3.5% for the mouse,
4.0% for the tablet, and 3.970 for the trackball. However,
in the case of dragging, error rates were considerably higher,
with means of 10.870 for the mouse, 13,670 for the tablet,
and 17.3% for the trackball.

Figure 6 shows the mean percentage errors by device and
task, both adjusted and unadjusted. The unadjusted data
showed a significant main effect of task, with the dragging
task yielding many more errors than the pointing task

164



(Fl,ll = 45.28, p < .001). In addition there was a

significant main effect of device (F2,22 = 7.57, p e .001).

This effect, however, was entirely due to the dragging task
as shown by a significant interaction (F2,22 = 16.04, p c
.001). While there was no difference in error rate across
devices in the pointing task, error rate in the dragging task
was dependent on device, with the trackball yielding the
most errors and the mouse the fewest.

Adjusting for errors, not surprisingly, had a profound effect
on dragging. By definition, no dropping errors occur in the
pointing task; however, the same criterion was applied for
consistency. If valid, not as many errors would be
eliminated in the pointing task. As evident in Figure 6,
this was the case.

Pointing

~

Unadjusted

Adjusted

Unadjusted

Adjusted

o~
Mouse Tablet Trackball

Device

Figure 6. Mean Percentage Errors by Device and Task

Fit of the Model
A goal of this experiment was to compare the performance
of several device-task combinations using Fitts’ information
processing model. Although Fitts’ index of performance
(H’, in bits/s) is considered an important performance
metric, the disparity in error rates diminishes the validity of
comparisons across device-task conditions. Clearly (see
Figures 5 & 6), subjects were performing at different points
on the speed-accuracy continuum for each device-task
condition.

We applied Welford’s (1968, p. 147) technique for
normalizing response variability based on subjects’ error
rate. For each A-W condition, target width was transformed
into an effective target width (We) — for a nominal error

rate of 4% — and ID was re-computed. Then, MT was
regressed on the “effective” ID. Performance differences
emerging horn normalized data should be more indicative of

inherent device-task properties, Figure 7 shows the results
of such an analysis.

There were consistently high correlations (r-) between
movement time (MT) and the index of task difficulty (ID,
computed using Equation 3) for all device-task

combinations.2 The performance indices (1P), obtained
through linear regression, were less than those found by
Card et al. (1978), but are comparable to those cited earlier.
The rank order of devices changed across tasks, with the
tablet outperformed the mouse during pointing but not
during dragging. The differences, however, were slight.
The trackball, third for both tasks, had a particularly low
rating of 1P = 1.5 bitsls during dragging.

Five of the intercepts were close to the origin (within 135
ins); however, a large, negative intercept appeared for the
trackball-dragging combination (-349 ins). With a negative
intercept, the possibility of a negative predicted movement
time looms. However, the chance of such an erroneous
prediction is remote because of the large slope coefficients.
For example, under the latter condition, a negative
prediction would only occur for ID< 0.5 bits.

Regression Coefficients

Intercept, Slope, b 1P
Device $ a (ins) (ins/bit) (bits/s)b

Pointing
Mouse .990 -107 223 4.5
Tablet .988 -55 204 4.9
Trackball .981 75 300 3.3

Dragging
Mouse .992 135 249 4.0
Tablet .992 -27 276 3.6
Trackball .923 -349 688 1.5

an = 16, p <.001

bZP (index of performance) = l/b

Figure 7. Fitts’ Law Models
A regression analysis for each device-task combination
shows the correlation (r), intercept (a), slope (b), and
index of pe~ormance (IP = llb). Prediction equations
are of the form MT = a + b ID, where ID = log2(AiW

+ 1).

CONCLUSION
This experiment confirmed the Card et al. (1978) finding of
the superb performance of the mouse for pointing tasks,
although the performance was comparable using a stylus
and tablet.

The experiment showed a clear difference with devices in
performing State 1 (pointing) and State 2 (dragging) tasks.
For State 2 tasks, movement times are longer and error

2The correlations in all cases were slightly lower when
computed using Equation 1 or 2.
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rates are higher. The degradation between states differs
across devices.

The trackball was a poor performer for both tasks, and had a
very high error rate during dragging. This can be explained
by noting the extent of muscle and limb interaction required
to maintain State 2 motion and to execute state transitions.
The button on the trackball was operated with the thumb
while the ball was rolled with the fingers. It was
particularly difficult to hold the ball stationary with the
fingers while executing a state transition with the thumb:
The interaction between muscle and limb groups was
considerable. This was not the case with the mouse or
tablet which afford separation of the means to effect action.
Motion was realized through the wrist or forearm with state
transitions executed via the index finger (mouse) or the
application of pressure (tablet). Clearly, in the design of
direct manipulation systems employing State 2 actions, the
performance of devices in both states should be considered.

The experiment also showed that Fitts’ law can model both
dragging and pointing tasks; however, performance indices
within devices were higher while pointing. Overall, 1P
ranged from 1.5 to 4.9 bits/s, somewhat less than the
values found by Card et al. (1978) but comparable to values
in other studies.

Of the devices tested, the highest index of performance was
for the tablet during pointing and for the mouse during

dragging. It is felt that a stylus, despite the requirement of
additional, non-standard hardware, has the potential to
perform as well as the mouse in direct manipulation
systems, and may out-perform the mouse when user
activities include, for example, drawing or gesture
recognition.

Clearly, the work is not complete, and issues such as
extending Fitts’ law to accommodate approach angle need
further investigation,
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