
Example-Centric Programming: Integrating Web Search
into the Development Environment

Joel Brandt1,2, Mira Dontcheva2, Marcos Weskamp2, Scott R. Klemmer1

1Stanford University HCI Group 2Advanced Technology Labs
Computer Science Department Adobe Systems

Stanford, CA 94305 San Francisco, CA 94103
{jbrandt, srk}@cs.stanford.edu {mirad, mweskamp}@adobe.com

ABSTRACT
The ready availability of online source-code examples has
fundamentally changed programming practices. However,
current search tools are not designed to assist with pro-
gramming tasks and are wholly separate from editing tools.
This paper proposes that embedding a task-specific search
engine in the development environment can significantly
reduce the cost of finding information and thus enable pro-
grammers to write better code more easily. This paper de-
scribes the design, implementation, and evaluation of Blue-
print, a Web search interface integrated into the Adobe
Flex Builder development environment that helps users
locate example code. Blueprint automatically augments
queries with code context, presents a code-centric view of
search results, embeds the search experience into the edi-
tor, and retains a link between copied code and its source.
A comparative laboratory study found that Blueprint en-
ables participants to write significantly better code and find
example code significantly faster than with a standard Web
browser. Analysis of three months of usage logs with 2,024
users suggests that task-specific search interfaces can sig-
nificantly change how and when people search the Web.

Author Keywords
Example-centric development

ACM Classification Keywords
H5.2. Information interfaces and presentation: User
Interfaces—prototyping.

General terms
Design, Human Factors

INTRODUCTION
Programmers routinely face the “build or borrow” question
[7]: implement a piece of functionality from scratch, or locate
and adapt existing code? The increased prevalence of online
source code—shared in code repositories, documentation,
blogs and forums [1, 2, 6, 9, 23]—enables programmers to
opportunistically build applications by iteratively searching
for, modifying, and combining examples [5, 8, 15].

Programmers use Web resources in diverse ways. For a
simple reminder, a quick Web search and a glance at the
search result summaries are often adequate. To learn a new
technique, programmers will likely spend more time, per-
form several searches, and aggregate and compare informa-
tion across multiple sites [6]. Currently, a programmer
searching for example code uses a Web browser that is in-
dependent of other tools in his tool chain, a search engine
that has no notion of his current development context, and a
code editor that assumes that all code is typed by hand.
This paper investigates whether a task-specific search en-
gine integrated into existing programming environments
can significantly reduce the cost of searching for relevant

Figure 1. The Blueprint plug-in for the Adobe Flex Builder
development environment helps programmers locate example
code. A hotkey places a search box (A) at the programmerʼs
cursor position. Search results (B) are example-centric; each
result contains a brief textual description (C), the example code
(D), and, when possible, a running example (E). The userʼs
search terms are highlighted (F), facilitating rapid scanning of
the result set. Blueprint allows users to rate examples (G).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

information. Small performance improvements can cause
categorical behavior changes that far exceed the benefits of
decreased task completion time [13]. We believe that re-
ducing search cost through tool integration may increase
and change how programmers find and use examples.
These ideas are manifest in Blueprint, a Web search inter-
face integrated into the Adobe Flex Builder development
environment that helps users locate example code.
Two insights drove Blueprint’s design (see Figures 1 and 2).
First, embedding search into the development environment
allows the search engine to leverage the users’ context (e.g.
programming languages and framework versions in use).
This lowers the cost of constructing a good query, which
improves result quality. Second, extracting code examples
from Web pages and composing them in a consistent, code-
centric search results view reduces the need to click
through to Web pages to find example code. This allows
users to evaluate results much more rapidly than with tradi-
tional Web search interfaces, reducing the cost of selecting
a good result.
This paper reports on a comparative laboratory study with 20
participants. In the lab, participants in the Blueprint condi-
tion found and adapted example code significantly faster
than those in the traditional Web search condition. Blue-
print participants also wrote significantly better code, per-
haps because they could look at many more examples and
choose a better starting point.
We released Blueprint online and logged its use. After
three months, we conducted open-ended interviews with
four frequent users. Three themes emerged. First, the inter-
viewees felt that the benefits of consistent, example-centric
results outweigh the drawbacks of missing context. Second,
they claimed that Blueprint is symbiotic with existing IDE
features. Third, they reported using Blueprint primarily to
clarify existing knowledge and remind themselves of for-
gotten details.
To understand whether these three themes applied broadly,
we compared Blueprint’s query logs to logs from a tradi-
tional search interface. We tested three hypotheses: First, if
additional context is not necessary, Blueprint queries should
have a significantly lower click-through rate. Second, if users
are using Blueprint in concert with other IDE features, they
are likely querying with code and more Blueprint search
terms should contain correctly formatted code. Third, if
Blueprint is used for reminders, Blueprint users should re-
peat queries more frequently across sessions. Evidence for
all three of these hypotheses was found in the logs, indicat-
ing that users are searching differently with Blueprint than
with traditional tools. These findings suggest that task-
specific search interfaces may cause a fundamental shift in
how and when individuals search the Web.
This research is inspired by prior work in two domains:
tailoring Web search to specific tasks and domains, and
providing support for example-centric development.

Task-Specific Search Interfaces
Prior work on tailoring search interfaces [18, 29] has ex-
plored decision-making tasks [10, 11, 22], Web page revisi-
tation tasks [3, 27], and, most relevant to our work, pro-
gramming tasks [4, 19, 26]. Blueprint follows a template-
based approach [10] to display results from a diverse set of
pages in a consistent manner enabling users to rapidly
browse and evaluate search results.
There are research [19, 26] and commercial [1, 2] systems
designed to improve search for programmers. While these
search engines are domain-specific, they are designed to
support a broad range of tasks. Blueprint, on the other
hand, is task-specific: it is oriented specifically towards
finding example code. This introduces a trade-off: Blue-
print’s interface is optimized for a specific task, but loses
generality. These systems are also completely independent
of the user’s development environment.
CodeTrail explores the benefits of integrating Web brows-
ing tools and development environments by linking the
Firefox browser and Eclipse IDE [12]. Blueprint goes one
step further by placing search directly inside the develop-
ment environment. Again, this introduces a trade-off: Blue-
print gives up the rich interactions available in a complete,
stand-alone Web browser in favor of a more closely-
coupled interaction for a specific task.
Example-Centric Development
Prior work has created tools to assist with example-centric
development [17]. This work has addressed the availability
of example code problem by mining code repositories [25,
28] or synthesizing example code from API specifications
[21]. Blueprint is unique in that it uses regular Web pages
(e.g. forums, blogs, and tutorials) as sources for example
code. We believe using regular Web pages as sources for
example code has two major benefits: First, it may provide
better examples. Code written for a tutorial is likely to con-
tain better comments and be more general purpose than code
extracted from an open source repository. Second, because
these pages also contain text, programmers can use natural
language queries to find the code they are looking for.
The remainder of this paper proceeds as follows. We first
present a scenario that describes the use of Blueprint and
presents its interface. We then describe the implementation
of Blueprint. Next, we detail the evaluation of Blueprint
through a comparative laboratory study and a 3-month de-
ployment. We conclude by positioning Blueprint in a design
space of tools that support example-centric development.
SCENARIO: DEVELOPING WITH BLUEPRINT
Blueprint is designed to help programmers with directed
search tasks and allow them easily remind themselves of
forgotten details, and clarify existing knowledge. Let’s fol-
low Jenny as she creates a Web application for visualizing
power consumption.
First, Jenny needs to retrieve power-usage data from a Web
service. Although Jenny has written similar code previously,
she can’t remember the exact code she needs. She does re-
member that one of the main classes involved began with

“URL”. So, she types “URL” into her code and uses auto-
complete to remember the “URLLoader” class. Although,
she now knows the class name, Jenny still doesn’t know how
to use it (Figure 2, step 1). With another hotkey Jenny brings
up the Blueprint search interface, which automatically starts
searching for URLLoader (step 2). Blueprint augments
Jenny’s query with the language and framework version she
is using, and returns appropriate examples that show how to
use a URLLoader. She scans through the first few examples
and sees one that has all the pieces she needs (step 3). She
selects the lines she wants to copy, presses Enter, and the
code is pasted in her project. Blueprint augments the code
with a machine- and human-readable comment that records
the URL of the source and the date of copy (step 4). When
Jenny opens this source file in the future, Blueprint will
check this URL for changes to the source example (e.g., with
a bug fix), and will notify her if an update is available. Jenny
runs the code in Flex’s debugger to inspect the XML data.
Next, Jenny wants to explore different charting components
to display power usage. She invokes Blueprint a second
time and searches for “charting”. Jenny docks the Blueprint
result window as a panel in her development environment
so she can browse the results in a large, persistent view.
When source pages provide a running example, Blueprint
presents this example next to the source code. Eventually
Jenny picks a line chart, copies the example code from the
Blueprint panel into her project, and modifies it to bind the
chart to the XML data.
Finally, Jenny wants to change the color of the lines on the
chart. She’s fairly confident that she knows how to do this, and
types the necessary code by hand. To make sure she didn’t
miss any necessary steps, she presses a hotkey to initiate a
Blueprint search from one of the lines of code she just wrote.
Blueprint automatically uses the contents of the current line as
the initial query. Because terms in this line of code are com-
mon to many examples that customize charts, she quickly
finds an example that matches what she is trying to do. She
confirms her code is correct, and begins testing the applica-
tion. After only a few minutes her prototype is complete.
IMPLEMENTATION
Blueprint comprises a client plug-in, which provides the
user interface for searching and browsing results, and the
Blueprint server, which executes searches for example
code. Figure 3 provides a visual system description.
Client-Side Plug-In
The Blueprint client is a plug-in for Adobe Flex Builder.
Flex Builder, in turn, is a plug-in for the Eclipse Develop-
ment Environment. The Blueprint client provides three
main pieces of functionality. First, it provides a user inter-
face for initiating queries and displaying results. Second, it
sends contextual information (e.g. programming language
and framework version) with each user query to the server.
Third, it notifies the user when the Web origin of examples
they adapted has updated (e.g., when a bug is fixed). All
communication between the client and server occurs over
HTTP using the JSON data format.

Figure 2. Example-centric programming with Blueprint. The
user presses a hotkey to initiate a search; a search box
appears at the cursor location (1). Searches are performed
interactively as the user types; example code and running
examples (when present) are shown immediately (2). The
user browses examples with the keyboard or mouse, and
presses Enter to paste an example into her project (3).
Blueprint automatically adds a comment containing
metadata that links the example to its source (4).

Blueprint’s query and search results interface is imple-
mented using HTML and JavaScript that are rendered by
SWT browser widgets. Search results are rendered sequen-
tially in a list below the query box. Each search result in-
cludes the source Web page title, a hyperlink to the source
Web page, English description of the example, the code ex-
ample, and, if available, a running example (in our case in
Flash) showing the functionality of the code. All examples
include syntax highlighting (produced by the Pygments li-
brary), and users can navigate through examples using the
Tab key and copy/paste selections by pressing enter. Users
can rate examples and dock the Blueprint floating window
as an Eclipse panel. Blueprint also allows users to follow
hyperlinks to view search results in context, and maintains a
browsing and search history.
When users paste example code into a project, Blueprint
inserts a Javadoc-like comment at the beginning. This
comment tags the example code with its URL source, the
insertion date and time, and a unique numerical identifier.
This metadata is both human- and machine-readable. Blue-
print searches for these example comments each time a file
is opened. For each comment, it queries the Blueprint
server to check if the original example has been modified
since it was copied.
Blueprint Server
The Blueprint server executes queries for example code
and returns examples to the client. To maximize speed,
breadth, and ranking quality, the server leverages the
Adobe Community Help search APIs, a Google Custom
Search engine. This search engine indexes Adobe product-
specific content from across the Web. When the Blueprint
server receives a query, it first augments the query with the
user’s context (e.g. programming language and framework
version), which is sent along with the query by the client.
Then the server sends the new augmented query to the
search engine, which returns a set of URLs. Since Blueprint
users are interested in code examples and not Web pages,
the server retrieves the Web pages returned by the search
engine and processes them to extract source code examples.

Since processing each page requires on average 10 seconds
(8 seconds to retrieve the page, 2 second to extract exam-
ples), we preprocess pages and cache extracted examples.
When the search engine returns URLs that are not in the
Blueprint cache, the URLs are added to the cache by a
background process. Code examples from those URLs are
returned in future queries.
Before deploying Blueprint, we pre-populated the cache
with approximately 50,000 URLs obtained from search en-
gine query logs. To keep the cache current, Blueprint
crawls the URLs in the cache as a background process.
Since pages containing examples are relatively static, the
Blueprint prototype re-crawls them weekly. The current
Blueprint cache includes 59,424 examples from 21,665
unique Web pages.
Leveraging an existing commercial search engine to produce
a candidate result set has a number of advantages over build-
ing a new search engine (e.g. [19, 26]). First, it is substan-
tially more resource-efficient to implement, as keeping a
document collection up to date is expensive. Second, gener-
ating high-quality search results from natural-language que-
ries is a hard problem and a highly-optimized commercial
search engine is likely to produce better results than a proto-
type search engine with a restricted domain. Finally, a gen-
eral-purpose search engine surfaces examples from tutorials,
blogs, and API pages. Examples found on such pages are
more likely to be instructive than examples extracted from
large source code repositories.
Extracting Example Code and Descriptions
To extract source code from Web pages, Blueprint segments
the page and classifies each segment as source code or other
type of content. First, Blueprint uses the BeautifulSoup li-
brary [24] to transform HTML into proper XHTML, and then
it divides the resulting hierarchical XHTML document into
independent segments by examining block-level elements.
Blueprint uses 31 tags to define blocks; the most common
are: P, H1, DIV, and PRE. It also extracts SCRIPT and OBJECT
blocks as block-level elements, because running examples
that show executing example code are usually contained

Figure 3. Architecture of the Blueprint system. The process of servicing a userʼs query is shown on the left; the background
task of parsing Web pages to extract examples is shown on the right.

within these tags. To find block-level elements, Blueprint
performs a depth-first traversal of the document. When it
reaches a leaf element, it backtracks to the nearest block-
level ancestor and creates a segment. If the root of the tree is
reached before finding a block-level element, the element
immediately below the root is extracted as a segment. This
algorithm keeps segments ordered exactly as they were in
the original file. Finally, to more easily and reliably deter-
mine whether a segment contains code, Blueprint renders
each segment to plain text using w3m, a text-based Web
browser. This rendering allows for classification of code
based on its appearance to a user on a Web page and not
based on its HTML structure.
Blueprint stores the HTML and plain text versions of all
segments in a database. On average, a Web page in our
dataset contains 161 segments. However, 69% of these are
less than 50 characters long (these are primarily created by
navigational elements). Although this algorithm leads to a
large number of non-source code segments, it correctly
parses blocks of example code into single segments, which
enables our classifiers to prune non-source code segments.
One limitation of this extraction algorithm is that it as-
sumes code examples on Web pages are independent and
so it does not handle Web pages that provide several re-
lated code examples that should be considered in concert,
such as tutorials that list several steps or offer several com-
plementary alternatives.
Classifying example code
Given a set of clean, separate segments, the most straight-
forward approach to classifying them as source code is to
use a programming language parser and label segments that
parse correctly as code. For Blueprint, this would require
ActionScript and MXML parsers, because they are the two
languages used by Adobe Flex. In practice, this approach
yields many false negatives: segments that contain code but
are not labeled as such. For example, code with line num-
bers or a typo will cause parsing to fail.
An alternate approach is to specify heuristics based on fea-
tures unique to code, such as curly braces, frequent use of
language keywords, and lines that end with semi-colons
[19]. This approach produces many fewer false negatives,
but introduces false positives, such as paragraphs of text that
discuss code. Such paragraphs usually describe other source
code found on the page and are not useful on their own.
To remove buggy code that appears in forums and blog
post comments, we ignore all segments that follow a com-
ment block (where a comment block is a block that in-
cludes the word “comment”) and all Web pages that in-
clude “group” or “forum” in the URL.
We computed precision (MXML: 84%, AS: 91%) and recall
(MXML: 90%, AS: 86%) on 40 randomly sampled Web
pages from a corpus of the 2000 most frequently visited Web
pages from the Adobe Community Help Search Web site. We
compared the examples extracted by Blueprint to the examples
manually extracted by two researchers. Precision was mainly
affected by misclassifying source examples in other languages

(e.g. HTML, Javascript, and Coldfusion) as MXML or Ac-
tionScript. Recall differed among types of Web pages. API
reference Web pages, which are often produced automatically,
were much easier to parse than tutorial Web pages, which vary
greatly in the types of examples they show.
Extracting text and running examples
In addition to extracting source code, Blueprint extracts Eng-
lish descriptions and, where possible, running examples for
each code segment. Informal inspection of pages containing
example code found that the text immediately preceding an
example almost always described the example, and running
examples almost always occurred after the example code.
To build descriptions, Blueprint iteratively joins the seg-
ments immediately preceding the code until any of three
conditions is met: 1.) we encounter another code segment,
2.) we encounter a segment indicative of a break in content
(those generated by DIV, HR, or heading tags), or 3.) we
reach a length threshold (currently 250 words). Using this
strategy the English we extract is the correct example de-
scription roughly 83% of the time as compared to the de-
scriptions manually extracted by two researchers.
To find running examples, Blueprint analyzes the k segments
following a code example. Because we are concerned with
Flex, all examples occur as Flash SWF files. We search for
references to SWF files in OBJECT and SCRIPT tags. In prac-
tice, we have found k=3 works best; larger values resulted in
erroneous content, such as Flash-based advertisements.
Keeping track of changes to examples
Each time a page is crawled, Blueprint checks for updates
to the examples (e.g., bug fixes). It performs an exhaustive,
pairwise comparison of examples on the new and old pages
using the diff tool. Pages typically contain fewer than ten
examples. If an example on the new and old pages matches
exactly, they are deemed the same. If a new example has
more than two-thirds of its lines in common with an old
example, it is recorded as changed. Otherwise, the new
example is added to the repository. When an example is no
longer available on the Web, we keep the cached versions
but do not display it as part of search results. The database
stores each example with a timestamp, and keeps all previ-
ous versions. These timestamps allow Blueprint to notify
users when an example changes.
EVALUATION: STUDYING BLUEPRINT IN THE LAB
We conducted a comparative laboratory study with 20 par-
ticipants to better understand how Blueprint affects the ex-
ample-centric development process. The laboratory study
evaluated three hypotheses:
H1: Programmers using Blueprint will complete directed
tasks more quickly than those who do not because they will
find example code faster and bring it into their project sooner.
H2: Code produced by programmers using Blueprint will
have the same or higher quality as code written by example
modification using traditional means.
H3: Programmers who use Blueprint produce better de-
signs on an exploratory design task than those using a Web
browser for code search.

Method
We recruited twenty professional programmers through an
internal company mailing list and compensated them with a
$15 gift card. The participants had an average of 11.3 years
of professional experience. Fourteen reported at least one
year of programming experience with Flex; twelve reported
spending at least 25 hours a week programming in Flex.
The participants were given an off-the-shelf installation of
Flex Builder, pre-loaded with three project files. The par-
ticipants in the control condition were provided with the
Firefox Web browser; they were asked to use the Adobe
Community Help Search engine to look for example code.
Participants in the treatment condition were provided with
Blueprint to search for code samples; they were not al-
lowed to use a Web browser.
Participants were asked to complete a tutorial, a directed
task, and an exploratory task. Participants were told that
they would be timed and that they should approach all tasks
as though they are prototyping and not writing production-
level code. Participants began each task with a project file
that included a running application, and they were asked to
add additional functionality.
For the tutorial task, the sample application contained an
HTML browsing component and three buttons that navi-
gate the browser to three different Web sites. Participants
received a written tutorial that guided them through adding
fade effects to the buttons and adding a busy cursor. In the
control condition, the participants were asked to use the
Web browser to find sample code for both modifications.
The tutorial described which search result would be best to
follow and which lines of code to add to the sample appli-
cation. In the treatment condition, the participants were
asked to use Blueprint to find code samples.
For the directed programming task, the participants were
instructed to use the URLLoader class to retrieve text from
a URL and place it in a text box. They were told that they
should complete the task as quickly as possible. In addition,
the participants were told that the person to complete the
task fastest would receive an additional gift card as a prize.
Participants were given 10 minutes to complete this task.
For the exploratory programming task, participants were
instructed to use Flex Charting Components to visualize an
array of provided data. The participants were instructed to
make the best possible visualization. They were told that
the results would be judged by an external designer and the
best visualization would win an extra gift card. Participants
were given 15 minutes to complete this task.
To conclude the study, we asked the participants a few
questions about their experience with the browsing and
searching interface.
Results
Directed Task
Nine out of ten Blueprint participants and eight out of ten
control participants completed the directed task. Because
not all participants completed the task and completion time
may not be normally distributed, we report all significance

tests using rank-based non-parametric statistical methods
(Wilcoxon-Mann-Whitney test for rank sum difference and
Spearman rank correlation).
We ranked the participants by the time until they pasted the
first example. See Figure 4. Participants using Blueprint
pasted code for the first time after an average of 57 sec-
onds, versus 121 seconds for the control group. The rank-
order difference in time to first paste was significant (p <
0.01). Among finishers, those using Blueprint finished after
an average of 346 seconds, compared to 479 seconds for
the control. The rank-order difference for all participants in
task completion time was not significant (p=0.14). Partici-
pants’ first paste time correlates strongly with task comple-
tion time (rs=0.52, p=0.01). This suggests that lowering the
time required to search for, selecting and copying examples
will speed development.
A professional software engineer external to the project
rank-ordered the participants’ code. He judged quality by
whether the code met the specifications, whether it in-
cluded error handling, whether it contained extraneous
statements, and overall style. Participants using Blueprint
produced significantly higher-rated code (p=0.02). We hy-
pothesize this is because the example-centric result view in
Blueprint makes it more likely that users will choose a
good starting example. When searching for “URLLoader”
using the Adobe Community Help search engine, the first
result contains the best code. However, this result’s snippet
did not convey that the page was likely to contain sample
code. For this reason, we speculate that some control par-
ticipants overlooked it.
Exploratory Task
A professional designer rank-ordered the participants’
charts. To judge chart quality, he considered the appropri-
ateness of chart type, whether or not all data was visual-
ized, and aesthetics of the chart. The sum of ranks was
smaller for participants using Blueprint (94 vs. 116), but
this result was not significant (p=0.21). While a larger
study may have found significance with the current imple-
mentation of Blueprint, we believe improvements to Blue-
print’s interface (described below) would make Blueprint
much more useful in exploratory tasks.
Areas for Improvement
When asked “How likely would you be to install and use
Blueprint in its current form?” participants responses aver-
aged 5.1 on a 7-point Likert scale (1 = “not at all likely”, 7
= “extremely likely”). Participants also provided several
suggestions for improvement.
The most common requests were for greater control over
result ranking. Two users suggested that they should be
able to rate (and thus affect the ranking of) examples. Three
users expressed interest in being able to filter results on
certain properties such as whether result has a running ex-
ample, the type of page that the result was taken from
(blog, tutorial, API documentation, etc.), and the presence
of comments in the example. Three participants requested
greater integration between Blueprint and other sources of

data. For example, one participant suggested that all class
names appearing in examples be linked to their API page.
Finally, three participants requested maintaining a search
history; one also suggested a browseable and searchable
history of examples used. We implemented the first two
suggestions before the field deployment. The third remains
future work.
Discussion
In addition to the participants’ explicit suggestions, we
identified a number of shortcomings as we observed par-
ticipants working. It is currently difficult to compare multi-
ple examples using Blueprint. Typically, only one example
fits on the screen at a time. To show more examples simul-
taneously, one could use code-collapsing techniques to re-
duce each example’s length. Additionally, Blueprint could
show all running examples from a result set in parallel. Fi-
nally, visual differencing tools might help users compare
two examples.
We assumed that users would only invoke Blueprint once
per task. Thus, each time Blueprint is invoked, the search
box and result area would be empty. Instead, we observed
that users invoked Blueprint multiple times for a single task
(e.g. when a task required several blocks of code to be cop-
ied to disparate locations). Results should be persistent, but
it should be easier to clear the search box: when re-
invoking Blueprint, the terms should be pre-selected so that
typing replaces them.
LONGITUDINAL STUDY: DEPLOYMENT TO 2,024 USERS
To better understand how Blueprint would affect the
workflow of real-world programmers, we conducted a
three-month deployment on the Adobe Labs Web site. Over
the course of the deployment, we performed bug fixes and
minor design improvements (often based on feedback
through the Web forum); the main interaction model re-
mained constant throughout the study.
At the completion of the study, we conducted 30-minute
interviews with four active Blueprint users to understand
how they integrated Blueprint in their workflows. Based on
the interviews, we formed three hypotheses, which we
tested with the Blueprint usage logs. After evaluating these
hypotheses, we performed further exploratory analysis of
the logs. This additional analysis provided high-level in-
sight about current use that we believe will help guide fu-
ture work in creating task-specific search interfaces.
Insights from Interviewing Active Users
Our interviews with active users uncovered three broad
insights about the Blueprint interface. To understand if
these insights generalize, we distilled each insight into a
testable hypothesis. The insights and hypotheses are pre-
sented here; the results of testing them are presented in the
following section.
The benefits of consistent, example-centric results outweigh
the drawbacks of missing context.
A consistent view of results makes scanning the result set
more efficient. However, in general, removing content from
its context may make understanding the content more diffi-

cult. None of our interviewees found lack of context to be a
problem when using Blueprint. One interviewee walked us
through his strategy for finding the right result: “Highlight-
ing [of the search term in the code] is the key. I scroll
through the results quickly, looking for my search term.
When I find code that has it, I can understand the code much
faster than I could English.” We hypothesize that examining
code to determine if a result is relevant has a smaller gulf of
evaluation [20] than examining English. Presenting results in
a consistent manner makes this process efficient.
When users desire additional context for a Blueprint result,
they can click through to the original source Web page.
This Web page opens in the same window where Blueprint
results are displayed. If additional context is rarely neces-
sary, we expect a low click-through rate.
H1: Blueprint will have a significantly lower click-through
rate than seen in a standard search engine.
Blueprint is symbiotic with existing IDE features; they each
make the other more useful.
Three interviewees reported using Blueprint as an “exten-
sion” to auto-complete. They use auto-complete as an index
into a particular object’s functionality, and then use Blue-
print to quickly understand how that functionality works.
This suggests that embedding search into the development
environment creates a symbiotic relationship with other
features. Here, auto-complete becomes more useful be-
cause further explanation of the auto-complete results is
one keystroke away. We believe that this symbiotic rela-
tionship is another example of how integrating task-specific
search into a user’s existing tools can lower search costs.
Programmers routinely search with code terms when using
standard search engines [6]. However, when these search
terms are typed by hand, they frequently contain formatting
inconsistencies (e.g. method names used as search terms
are typed in all lowercase instead of camelCase). By con-
trast, when search terms come directly from a user’s code
(e.g. generated by output from auto-complete), the search
terms will be correctly formatted. If Blueprint is being used
in a symbiotic manner with other code editing tools, we
expect to see a large number of correctly formatted queries.
H2: Blueprint search terms will contain correctly formatted
code more often than search terms used with a standard
search engine.
Blueprint is used heavily for clarifying existing knowledge and
reminding of forgotten details.
One interviewee stated that, using Blueprint, he could find
what he needed “60 to 80 percent of the time without hav-
ing to go to API docs.” He felt that Blueprint fell in the
“mid-space between needing to jump down into API docs
when you don’t know what you’re doing at all and not
needing help because you know exactly what you are do-
ing.” Other interviewees echoed this sentiment. In general,
they felt that Blueprint was most useful when they had
some knowledge about how to complete the task at hand,
but needed a piece of clarifying information.

In general, understanding a user’s search goal from query
logs alone is not feasible—there is simply not enough con-
textual information available [14]. However, if uses of
Blueprint tend more toward reminding and clarifying exist-
ing knowledge than learning new skills, we expect that us-
ers will more commonly repeat queries they have per-
formed in the past.
H3: Users of Blueprint are more likely to repeat queries
across sessions than users of a standard search engine.
Methodology
To evaluate these hypotheses, one needs a comparison
point. Adobe’s Community Help search engine presents a
standard Web search interface that is used by thousands of
Flex programmers. Furthermore, Community Help uses the
same Google Custom Search Engine that is part of Blue-
print. In short, Blueprint and Community Help differ in
their interaction model, but are similar in search algorithm,
result domain, and user base.
We randomly selected 5% of users who used the Community
Help search engine over the same period as the Blueprint
deployment. We analyzed all logs for these users. In both
datasets, queries for individual users were grouped into ses-
sions. A session was defined as a sequence of events from
the same user with no gaps longer than six minutes. (This
grouping technique is common in query log analysis, e.g.
[6].) Common “accidental” searches were removed (e.g.,
empty or single-character searches, and identical searches
occurring in rapid succession) in both datasets.
We used the z-test for determining statistical significance
of differences in means and the chi-square test for deter-
mining differences in rates. Unless otherwise noted, all dif-
ferences are statistically significant at p < 0.01.
Results
Blueprint was used by 2024 individuals during the 82 day
deployment, with an average of 25 new installations per
day. Users made a total of 17012 queries, or an average of
8.4 queries per user. The 100 most active users made 1888
of these queries, or 18.8 queries per user.
The Community Help query logs used for comparison
comprised 13283 users performing 26036 queries, an aver-
age of 2.0 queries per user.
H1: Blueprint will have a significantly lower click-through
rate than seen in a standard search engine
Blueprint users clicked through to source pages signifi-
cantly less than Community Help users (µ = 0.38 versus
1.32). To be conservative: the mean of 0.38 for Blueprint is
an over-estimate. For technical reasons owing to the many
permutations of platform, browser, and IDE versions, click-
throughs were not logged for some users. For this reason,
this analysis discarded all users with zero click-throughs.

H2: Blueprint search terms will contain correctly formatted
code more often than search terms used with a standard
search engine.
To test this hypothesis, we used the occurrence of camel-
Case words as a proxy for code terms. The Flex frame-
work’s coding conventions use camelCase words for both
class and method names, and camelCase rarely occurs in
English words.
Significantly more Blueprint searches contained camelCase
than Community Help: 49.6% (8438 of 17012) versus
16.2% (4218 of 26036). The large number of camelCase
words in Blueprint searches indicates that many searches
are being generated directly from users’ code. This sug-
gests that, as hypothesized, Blueprint is being used in a
symbiotic way with other IDE features. The large number
of camelCase queries in Blueprint searches also indicates
that the majority of searches use precise code terms. This
suggests that Blueprint is being used heavily for clarifica-
tion and reminding, where the user has the knowledge nec-
essary to select precise search terms.
H3: Users of Blueprint are more likely to repeat queries
across sessions than users of a standard search engine.
Significantly more Blueprint search sessions contained
queries that had been issued by the same user in an earlier
session than for Community Help: 12.2% (962 of 7888 ses-
sions) versus 7.8% (1601 of 20522 sessions).
Exploratory Analysis
To better understand how Blueprint was used, we per-
formed additional exploratory analysis of the usage logs.
We present our most interesting findings below.
Using Blueprint as a resource to write code by hand is common.
A large percentage of sessions (76%) did not contain a
copy-and-paste event. There are two possible reasons for this
high number: First, as our interviewees reported, we believe
Blueprint is commonly used to confirm that the user is on the
right path – if they are, they have nothing to copy. Second,
sometimes Blueprint’s results aren’t useful. (For technical
reasons, copy-and-paste events were not logged on some
platforms. The statistic presented here is only calculated
amongst users were we could log this event. In this data set,
there were 858 sessions that contained copy-and-paste events
out of a total of 3572 sessions.)
People search for similar things using Blueprint and Commu-
nity Help, but the frequencies are different.
We examined the most common queries for Blueprint and
Community Help and found that there was a large amount
of overlap between the two sets: 10 common terms ap-
peared in the top 20 queries of both sets. The relative fre-
quencies, however, differed between sets. As one example,
the query “Alert” was significantly more frequent in Blue-
print than Community Help. It was 2.2 times more fre-
quent, ranking 8th versus 34th.

The initial result views for search “Alert” for both Blue-
print and Community Help are shown in Figure 5. In the
case of this particular search, we believe the difference in
frequency is explained by the granularity of the task the
user is completing. Namely, this task is small. When a user
searches for “Alert,” he is likely seeking the one line of
code necessary to display a pop-up alert window. In Blue-
print, the desired line is immediately visible and high-
lighted; in Community Help, the user must click on the first
result and scroll part way down the resulting page to find
the code. Alerts are often used for debugging, where there
are reasonable—but less optimal—alternative approaches
(e.g. “trace” statements). It may be the case that Blueprint’s
lowered search cost changes user behavior. Users who do
not have Blueprint more frequently settle for sub-optimal
approaches because of the relatively higher cost of taking
the optimal approach.
Both interface modalities are important
Users can interact with blueprint either as a pop-up window
or inside a docked panel. Among all users, 59% of sessions
used only the pop-up interface, 9% used only the docked in-
terface, and 32% used both. This suggests that providing both
interfaces is important. Furthermore the fact that users fre-
quently switched between interfaces mid-session suggests
that some tasks are more appropriate for a particular interface.
User Retention
Are early adopters of Blueprint still using it, or is Blueprint
simply an interesting curiosity that users pick up, try a few
times, and set aside? At the time of publication, Blueprint
had been publicly available for 200 days, and its user base
had grown to 3253, with an average of 16.3 new users per
day. During this time, the most active third of users (1084)
searched with Blueprint over at least a 10-day span. The
top 10% of users (325) queried Blueprint over at least a 59-
day span, and the top 1% of users (33) used queried Blue-
print over at least a 151-day span.
DESIGN SPACE
Blueprint represents one point in the design space of tools
for programmers (see Figure 6). We discuss Blueprint’s

limitations in the context of this design space and suggest
directions for future work.
Task: At a high level, programming comprises: planning
and design; implementation; and testing and debugging.
Blueprint helps programmers find code that implements
desired functionality. Other tasks could (and do) benefit
from Web search [26], but are not easily completed with
Blueprint’s interface. For example, to decipher a cryptic
error message, one may want to use program output as the
search query [16].
Expertise: Programmers vary in expertise with the tools
they use (e.g. languages and libraries), and their tasks (e.g.
implementing a piece of functionality). Because Blueprint
presents code-centric results, programmers must have the
expertise required to evaluate whether a result is appropriate.
Time scale: We designed Blueprint to make small tasks
faster by directly integrating search into the code editor. This
removes the activation barrier of invoking a separate tool.
While Blueprint can be docked to be persistent, for longer
information tasks, the advantages of a richer browser will
dominate the time savings of direct integration.
Approach: Programmer Web use can include very directed
search tasks as well as exploratory browsing tasks. Given
its emphasis on search, the Blueprint prototype is best
suited to directed tasks: a well-specified query can effi-
ciently retrieve a desired result. It is possible to use Blue-
print for exploratory tasks, such as browsing different types
of charts, however support for such tasks can be improved
by incorporating traditional Web browser features such as
tabbed browsing and search results sorting and filtering.
Integration Required: Some examples can be directly
copied. Others require significant modification to fit the
current context. Because Blueprint inserts example code
directly into the user’s project, it provides the most benefit
when example code requires little modification. When a
piece of code is part of a larger project, the programmer
may need to read more of the context surrounding the code
in order to understand how to adapt it.

Figure 5. Comparison of Blueprint (left) and Commmunity
Help (right) search result interfaces for the query “Alert”. The
desired information is immediately available in Blueprint;
Community Help users must click the first result and scroll
part way down the page to find the same information.

Figure 6. Design space of tools to aid programmersʼ Web
use. Blueprint is designed to address the portion of the
space shown with a shaded background.

Task

Expertise

Time Scale

Approach

Integration
Required

Planning &
design Implementation Testing &

debugging

Novice with
task & tools

Knowledable about tools,
novice with task

Knowledgable about
task & tools

minutes hours days

directed exploratory

copyable
directly

large amount of
modification necessary

CONCLUSION
To support programming by example modification, this
paper introduced a user interface for accessing online ex-
ample code from within the development environment. It
discussed the Blueprint client interface, which displays
search results in an example-centric manner. The Blueprint
server introduced a lightweight architecture for using a
general-purpose search engine to create code-specific
search results that include written descriptions and running
examples. In evaluating Blueprint, we found that it enabled
users to search for and select example code significantly
faster than with traditional Web search tools. Log analysis
from a large-scale deployment with 2,024 users suggested
that task-specific search interfaces may cause a fundamen-
tal shift in how and when individuals search the Web.
REFERENCES
 1 Google Code Search. http://code.google.com
 2 Krugle. http://www.krugle.com
 3 Adar, E., M. Dontcheva, J. Fogarty, and D. S. Weld.

Zoetrope: Interacting with the Ephemeral Web. In
Proceedings of UIST: ACM Symposium on User Interface
Software and Technology. pp. 239-48, 2008.

 4 Bajracharya, S., T. Ngo, et al. Sourcerer: A Search Engine
for Open Source Code Supporting Structure-Based Search.
In Companion to OOPSLA: ACM SIGPLAN Symposium on
Object-Oriented Programming Systems, Languages, and
Applications. pp. 681-82, 2006.

 5 Brandt, J., P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R.
Klemmer. Opportunistic Programming: Writing Code to
Prototype, Ideate, and Discover, IEEE Software, vol. 26(5):
pp. 18-24, 2009.

 6 Brandt, J., P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R.
Klemmer. Two Studies of Opportunistic Programming:
Interleaving Web Foraging, Learning, and Writing Code. In
Proceedings of CHI: ACM Conference on Human Factors in
Computing Systems. pp. 1589-98, 2009.

 7 Brooks, F. P., The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley. 1995.

 8 Clarke, S. What is an End-User Software Engineer? In End-
User Software Engineering Dagstuhl Seminar, 2007.

 9 deHaan, P., Flex Examples. http://blog.flexexamples.com/
 10 Dontcheva, M., S. M. Drucker, D. Salesin, and M. F. Cohen.

Relations, Cards, and Search Templates: User-Guided Web
Data Integration and Layout. In Proceedings of UIST: ACM
Symposium on User Interface Software and Technology. pp.
61-70, 2007.

 11 Dontcheva, M., S. M. Drucker, G. Wade, D. Salesin, and M.
F. Cohen. Summarizing Personal Web Browsing Sessions. In
Proceedings of UIST: ACM Symposium on User Interface
Software and Technology. pp. 115-24, 2006.

 12 Goldman, M. and R. C. Miller. Codetrail: Connecting Source
Code and Web Resources. In Proceedings of VL/HCC: IEEE
Symposium on Visual Languages and Human-Centric
Computing. pp. 65-72, 2008.

 13 Gray, W. D. and D. A. Boehm-Davis. Milliseconds Matter:
An Introduction to Microstrategies and to Their Use in
Describing and Predicting Interactive Behavior. Journal of
Experimental Psychology: Applied 6(4). pp. 322-35, 2000.

 14 Grimes, C., D. Tang, and D. M. Russell. Query Logs Alone
are Not Enough. In Workshop on Query Log Analysis at
WWW 2007: International World Wide Web Conference,
2007.

 15 Hartmann, B., S. Doorley, and S. R. Klemmer. Hacking,
Mashing, Gluing: Understanding Opportunistic Design,
IEEE Pervasive Computing, vol. 7(3): pp. 46-54, 2008.

 16 Hartmann, B., D. MacDougall, J. Brandt, and S. R.
Klemmer. What Would Other Programmers Do? Suggesting
Solutions to Error Messages. In Proceedings of CHI: ACM
Conference on Human Factors in Computing Systems, 2010.

 17 Hartmann, B., L. Wu, K. Collins, and S. R. Klemmer.
Programming by a Sample: Rapidly Creating Web
Applications with d.mix. In Proceedings of UIST: ACM
Symposium on User Interface Software and Technology. pp.
241-50, 2007.

 18 Hearst, M. A., Search User Interfaces. Cambridge University
Press. 2009.

 19 Hoffmann, R., J. Fogarty, and D. S. Weld. Assieme: Finding
and Leveraging Implicit References in a Web Search
Interface for Programmers. In Proceedings of UIST: ACM
Symposium on User Interface Software and Technology. pp.
13-22, 2007.

 20 Hutchins, E. L., J. D. Hollan, and D. A. Norman. Direct
Manipulation Interfaces. Human-Computer Interaction 1(4).
pp. 311-38, 1985.

 21 Mandelin, D., L. Xu, R. Bodík, and D. Kimelman. Jungloid
Mining: Helping to Navigate the API Jungle. In Proceedings
of PLDI: ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 48-61, 2005.

 22 Medynskiy, Y., M. Dontcheva, and S. M. Drucker. Exploring
Websites through Contextual Facets. In Proceedings of CHI:
ACM Conference on Human Factors in Computing Systems.
pp. 2013-22, 2009.

 23 Pirolli, P. L. T., Information Foraging Theory. Oxford
University Press. 2007.

 24 Richardson, L., Beautiful Soup.
http://www.crummy.com/software/BeautifulSoup

 25 Sahavechaphan, N. and K. Claypool. XSnippet: Mining for
Sample Code. In Proceedings of OOPSLA: ACM SIGPLAN
Symposium on Object-Oriented Programming Systems,
Languages, and Applications. pp. 413-30, 2006.

 26 Stylos, J. and B. A. Myers. Mica: A Web-Search Tool for
Finding API Components and Examples. In Proceedings of
VL/HCC: IEEE Symposium on Visual Languages and
Human-Centric Computing. pp. 195-202, 2006.

 27 Teevan, J., E. Cutrell, et al. Visual Snippets: Summarizing
Web Pages for Search and Revisitation. In Proceedings of
CHI: ACM Conference on Human Factors in Computing
Systems. pp. 2023-32, 2009.

 28 Thummalapenta, S. and T. Xie. PARSEweb: A Programmer
Assistant for Reusing Open Source Code on the Web. In
Proceedings of ASE: IEEE/ACM International Conference
on Automated Software Engineering. pp. 204-13, 2007.

 29 Woodruff, A., A. Faulring, R. Rosenholtz, J. Morrsion, and
P. Pirolli. Using Thumbnails to Search the Web. In
Proceedings of CHI: ACM Conference on Human Factors in
Computing Systems. pp. 198-205, 2001.

